A computationally efficient sequential regression imputation algorithm for multilevel data

被引:0
|
作者
Hocagil, Tugba Akkaya [1 ]
Yucel, Recai M. [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
[2] Temple Univ, Dept Epidemiol & Biostat, Philadelphia, PA USA
关键词
Sequential regression imputation; multilevel data; computational efficiency; fast variable by variable imputation; multiple imputation by chained equations; FULLY CONDITIONAL SPECIFICATION; MULTIPLE-IMPUTATION; MISSING-DATA; EFFECTS MODELS; CONVERGENCE; STRATEGIES;
D O I
10.1080/02664763.2023.2277669
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Due to the computational burden, especially in high-dimensional settings, sequential imputation may not be practical. In this paper, we adopt computationally advantageous methods by sampling the missing data from their perspective predictive distributions, which leads to significantly improved computation time in the class of variable-by-variable imputation algorithms. We assess the computational performance in a comprehensive simulation study. We then compare and contrast the performance of our algorithm with commonly used alternatives. The results show that our method has a significant advantage over the commonly used alternatives with respect to computational efficiency and inferential quality. Finally, we demonstrate our methods in a substantive problem aimed at investigating the effects of area-level behavioral, socioeconomic, and demographic characteristics on poor birth outcomes in New York State among singleton births.
引用
收藏
页码:2258 / 2278
页数:21
相关论文
共 50 条
  • [21] Computationally efficient Bayesian sequential function monitoring
    Shamp, Wright
    Varbanov, Roumen
    Chicken, Eric
    Linero, Antonio
    Yang, Yun
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2021, 54 (01) : 1 - 19
  • [22] MULTIPLE IMPUTATION FOR CATEGORICAL VARIABLES IN MULTILEVEL DATA
    Kottage, Helani Dilshara
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (02) : 349 - 350
  • [23] Multiple imputation of missing data in multilevel models with the R package mdmb: a flexible sequential modeling approach
    Simon Grund
    Oliver Lüdtke
    Alexander Robitzsch
    [J]. Behavior Research Methods, 2021, 53 : 2631 - 2649
  • [24] Multiple imputation of missing data in multilevel models with the R package mdmb: a flexible sequential modeling approach
    Grund, Simon
    Luedtke, Oliver
    Robitzsch, Alexander
    [J]. BEHAVIOR RESEARCH METHODS, 2021, 53 (06) : 2631 - 2649
  • [25] MISSING DATA, IMPUTATION AND REGRESSION TREES
    Loh, Wei-Yin
    Zhang, Qiong
    Zhang, Wenwen
    Zhou, Peigen
    [J]. STATISTICA SINICA, 2020, 30 (04) : 1697 - 1722
  • [26] A Computationally Efficient Continuous Model for the Modular Multilevel Converter
    Ahmed, Noman
    Angquist, Lennart
    Norrga, Staffan
    Antonopoulos, Antonios
    Harnefors, Lennart
    Nee, Hans-Peter
    [J]. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2014, 2 (04) : 1139 - 1148
  • [27] A computationally efficient multilevel coding scheme for ISI channels
    Chen, Mei
    Li, Teng
    Collins, Oliver M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) : 4556 - 4566
  • [28] A computationally efficient fano-based sequential detection algorithm for V-BLAST systems
    Cha, Jongsub
    Kang, Joonhyuk
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2007, E90B (06) : 1528 - 1531
  • [29] A Computationally Efficient Gravitational Search Algorithm
    Rothwell, Alex
    Aleti, Aldeida
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 181 - 182
  • [30] A Computationally Efficient Tensor Completion Algorithm
    Tsaknakis, Ioannis C.
    Giampouras, Paris, V
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (08) : 1266 - 1270