Classification of spinal curvature types using radiography images: deep learning versus classical methods

被引:6
|
作者
Tavana, Parisa [1 ]
Akraminia, Mahdi [2 ]
Koochari, Abbas [1 ]
Bagherifard, Abolfazl [3 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Comp Engn, Tehran, Iran
[2] Niroo Res Inst, Mech Rotary Equipment Res Dept, Tehran, Iran
[3] Iran Univ Med Sci, Shafa Orthoped Hosp, Bone & Joint Reconstruct Res Ctr, Tehran, Iran
关键词
Scoliosis; Machine learning; Transfer learning; Xception; MobileNetV2; Radiography images; CONVOLUTIONAL NEURAL-NETWORKS; X-RAY; ANNOTATION; DIAGNOSIS; PNEUMONIA; MODELS;
D O I
10.1007/s10462-023-10480-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scoliosis is a spinal abnormality that has two types of curves (C-shaped or S-shaped). The vertebrae of the spine reach an equilibrium at different times, which makes it challenging to detect the type of curves. In addition, it may be challenging to detect curvatures due to observer bias and image quality. This paper aims to evaluate spinal deformity by automatically classifying the type of spine curvature. Automatic spinal curvature classification is performed using SVM and KNN algorithms, and pre-trained Xception and MobileNetV2 networks with SVM as the final activation function to avoid vanishing gradient. Different feature extraction methods should be used to investigate the SVM and KNN machine learning methods in detecting the curvature type. Features are extracted through the representation of radiographic images. These representations are of two groups: (i) Low-level image representation techniques such as texture features and (ii) local patch-based representations such as Bag of Words (BoW). Such features are utilized by various algorithms for classification by SVM and KNN. The feature extraction process is automated in pre-trained deep networks. In this study, 1000 anterior-posterior (AP) radiographic images of the spine were collected as a private dataset from Shafa Hospital, Tehran, Iran. The transfer learning was used due to the relatively small private dataset of anterior-posterior radiology images of the spine. Based on the results of these experiments, pre-trained deep networks were found to be approximately 10% more accurate than classical methods in classifying whether the spinal curvature is C-shaped or S-shaped. As a result of automatic feature extraction, it has been found that the pre-trained Xception and mobilenetV2 networks with SVM as the final activation function for controlling the vanishing gradient perform better than the classical machine learning methods of classification of spinal curvature types.
引用
收藏
页码:13259 / 13291
页数:33
相关论文
共 50 条
  • [21] Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods
    Xuan, Junbo
    Ke, Baoyi
    Ma, Wenyu
    Liang, Yinghao
    Hu, Wei
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [22] Classification of Impacted Teeth from Panoramic Radiography Using Deep Learning
    Kharat, Shweta
    Udmale, Sandeep S.
    Nath, Aneesh G.
    Bhole, Girish P.
    Bhirud, Sunil G.
    DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2025, 2025, 15507 : 257 - 270
  • [23] Medical images classification using deep learning: a survey
    Rakesh Kumar
    Pooja Kumbharkar
    Sandeep Vanam
    Sanjeev Sharma
    Multimedia Tools and Applications, 2024, 83 : 19683 - 19728
  • [24] Classification of Plant Seedling Images Using Deep Learning
    Alimboyong, Catherine R.
    Hernandez, Alexander A.
    Medina, Ruji P.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 1839 - 1844
  • [25] Object Classification Using Spectral Images and Deep Learning
    Lopez, Carlos
    Jacome, Roman
    Garcia, Hans
    Arguello, Henry
    2020 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (IEEE COLCACI 2020), 2020,
  • [26] Efficient classification of the hyperspectral images using deep learning
    Simranjit Singh
    Singara Singh Kasana
    Multimedia Tools and Applications, 2018, 77 : 27061 - 27074
  • [27] Classification of cancer histology images using deep learning
    Xie, Weidong
    CANCER RESEARCH, 2019, 79 (13)
  • [28] Detection and Classification of Hysteroscopic Images Using Deep Learning
    Raimondo, Diego
    Raffone, Antonio
    Salucci, Paolo
    Raimondo, Ivano
    Capobianco, Giampiero
    Galatolo, Federico Andrea
    Cimino, Mario Giovanni Cosimo Antonio
    Travaglino, Antonio
    Maletta, Manuela
    Ferla, Stefano
    Virgilio, Agnese
    Neola, Daniele
    Casadio, Paolo
    Seracchioli, Renato
    CANCERS, 2024, 16 (07)
  • [29] Medical images classification using deep learning: a survey
    Kumar, Rakesh
    Kumbharkar, Pooja
    Vanam, Sandeep
    Sharma, Sanjeev
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 19683 - 19728
  • [30] Efficient classification of the hyperspectral images using deep learning
    Singh, Simranjit
    Kasana, Singara Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (20) : 27061 - 27074