Synthesis of Bitten Gold Nanoparticles with Single-Particle Chiroptical Responses

被引:2
|
作者
Zhang, Han [1 ,2 ]
Chen, Yang [2 ]
Chui, Ka Kit [2 ]
Zheng, Jiapeng [2 ]
Ma, Yicong [3 ]
Liu, Danjun [4 ]
Huang, Zhifeng [3 ]
Lei, Dangyuan [5 ]
Wang, Jianfang [2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong 999077, Peoples R China
[3] Hong Kong Baptist Univ, Dept Phys, Kowloon Tong, Kowloon, Hong Kong 999077, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Phys, Hung Hom, Hong Kong 999077, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, 83 Tat Chee Ave, Hong Kong 999077, Peoples R China
关键词
bitten nanoparticles; chirality; chiroptical responses; plasmon resonance; seed-mediated growth; POLYMER SOLAR-CELLS; SEEDED GROWTH;
D O I
10.1002/smll.202301476
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The introduction of structural complexity to nanoparticles brings them interesting properties. Regularity breaking has been challenging in the chemical synthesis of nanoparticles. Most reported chemical methods for synthesizing irregular nanoparticles are complicated and laborious, largely hindering the exploration of structural irregularity in nanoscience. In this study, the authors have combined seed-mediated growth and Pt(IV)-induced etching to synthesize two types of unprecedented Au nanoparticles, bitten nanospheres and nanodecahedrons, with size control. Each nanoparticle has an irregular cavity on it. They exhibit distinct single-particle chiroptical responses. Perfect Au nanospheres and nanorods without any cavity do not show optical chirality, which demonstrates that the geometrical structure of the bitten opening plays a decisive role in the generation of chiroptical responses.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SINGLE-PARTICLE MOTION
    TALMAN, R
    FRONTIERS OF PARTICLE BEAMS : OBSERVATION, DIAGNOSIS AND CORRECTION, 1989, 343 : 4 - 45
  • [32] Single-particle imaging
    Sayre, David
    Evolving Methods for Macromolecular Crystallography: THE STRUCTURAL PATH TO THE UNDERSTANDING OF THE MECHANISM OF ACTION OF CBRN AGENTS, 2007, 245 : 181 - 191
  • [33] Single-Particle Entanglement
    Azzini, Stefano
    Mazzucchi, Sonia
    Moretti, Valter
    Pastorello, Davide
    Pavesi, Lorenzo
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (10)
  • [34] SINGLE-PARTICLE TECHNIQUES
    FISCHER, BE
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1991, 54 (1-3): : 401 - 406
  • [35] Single-particle entanglement
    van Enk, SJ
    PHYSICAL REVIEW A, 2005, 72 (06):
  • [36] Single-particle virology
    Kiss B.
    Mudra D.
    Török G.
    Mártonfalvi Z.
    Csík G.
    Herényi L.
    Kellermayer M.
    Biophysical Reviews, 2020, 12 (5) : 1141 - 1154
  • [37] Single-particle Diffraction
    Sayre, David
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C1 - C1
  • [38] Single-particle photoelectrocatalysis
    Chen, Peng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [39] SINGLE-PARTICLE KINETICS
    TIMMONS, RJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 206 : 15 - FERT
  • [40] Single-particle entanglement
    Can, MA
    Klyachko, A
    Shumovsky, A
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (02) : L1 - L3