Superconvergence analysis of finite element methods for the variable-order subdiffusion equation with weakly singular solutions

被引:2
|
作者
Huang, Chaobao [1 ]
Chen, Hu [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
The variable-order time-fractional; diffusion equation; Weak singularity; The L1 scheme; Graded meshes; Finite element methods; DISCONTINUOUS GALERKIN METHOD; ERROR ANALYSIS; DIFFUSION; SCHEMES;
D O I
10.1016/j.aml.2022.108559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates an efficient numerical method to solve the variable -order subdiffusion equation with weakly singular solutions, which uses the L1 scheme on graded meshes in time and the finite element method in space. To obtain the optimal error estimate, the truncation error of the nonuniform L1 scheme for the variable-order Caputo derivative is given. Combining this result with a novel discrete fractional Gronwall inequality, we derive an optimal error estimate in L infinity(L2) norm and L infinity(H1) norm. Furthermore, by using a simple postprocessing technique of the numerical solution, a higher convergence order in space is obtained. Finally, a numerical experiment is given to confirm the sharpness of our theoretical results.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Superconvergence analysis of lower order anisotropic finite element
    Guo-Qing, Zhu
    Dong-Yang, Shi
    Shao-Chun, Chen
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (08) : 1119 - 1130
  • [22] Superconvergence analysis of lower order anisotropic finite element
    朱国庆
    石东洋
    陈绍春
    AppliedMathematicsandMechanics(EnglishEdition), 2007, (08) : 1119 - 1130
  • [23] Superconvergence analysis of lower order anisotropic finite element
    Guo-qing Zhu
    Dong-yang Shi
    Shao-chun Chen
    Applied Mathematics and Mechanics, 2007, 28 : 1119 - 1130
  • [24] Multiplicity of solutions for variable-order fractional Kirchhoff problem with singular term
    Chammem, R.
    Sahbani, A.
    Saidani, A.
    QUAESTIONES MATHEMATICAE, 2024, 47 (08) : 1613 - 1629
  • [25] MODELLING, ANALYSIS, AND NUMERICAL METHODS FOR A GEOMETRIC INVERSE SOURCE PROBLEM IN VARIABLE-ORDER TIME-FRACTIONAL SUBDIFFUSION
    Fan, Wei
    Hu, Xindi
    Zhu, Shengfeng
    INVERSE PROBLEMS AND IMAGING, 2023, 17 (04) : 767 - 797
  • [26] Efficient finite element numerical solution of the variable coefficient fractional subdiffusion equation
    Lin He
    Juncheng Lv
    Advances in Difference Equations, 2019
  • [27] Efficient finite element numerical solution of the variable coefficient fractional subdiffusion equation
    He, Lin
    Lv, Juncheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [28] Numerical analysis for a variable-order nonlinear cable equation
    Chen, Chang-Ming
    Liu, F.
    Burrage, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 209 - 224
  • [29] Analysis and discretization of a variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [30] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):