Superconvergence analysis of finite element methods for the variable-order subdiffusion equation with weakly singular solutions

被引:2
|
作者
Huang, Chaobao [1 ]
Chen, Hu [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
The variable-order time-fractional; diffusion equation; Weak singularity; The L1 scheme; Graded meshes; Finite element methods; DISCONTINUOUS GALERKIN METHOD; ERROR ANALYSIS; DIFFUSION; SCHEMES;
D O I
10.1016/j.aml.2022.108559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates an efficient numerical method to solve the variable -order subdiffusion equation with weakly singular solutions, which uses the L1 scheme on graded meshes in time and the finite element method in space. To obtain the optimal error estimate, the truncation error of the nonuniform L1 scheme for the variable-order Caputo derivative is given. Combining this result with a novel discrete fractional Gronwall inequality, we derive an optimal error estimate in L infinity(L2) norm and L infinity(H1) norm. Furthermore, by using a simple postprocessing technique of the numerical solution, a higher convergence order in space is obtained. Finally, a numerical experiment is given to confirm the sharpness of our theoretical results.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Weak Solvability of the Variable-Order Subdiffusion Equation
    Andrii Hulianytskyi
    Fractional Calculus and Applied Analysis, 2020, 23 : 920 - 934
  • [2] NUMERICAL METHODS FOR SOLVING A TWO-DIMENSIONAL VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    MATHEMATICS OF COMPUTATION, 2012, 81 (277) : 345 - 366
  • [3] Numerical approximation for a variable-order nonlinear reaction–subdiffusion equation
    Chang-Ming Chen
    F. Liu
    I. Turner
    V. Anh
    Y. Chen
    Numerical Algorithms, 2013, 63 : 265 - 290
  • [4] Numerical approximation for a variable-order nonlinear reaction-subdiffusion equation
    Chen, Chang-Ming
    Liu, F.
    Turner, I.
    Anh, V.
    Chen, Y.
    NUMERICAL ALGORITHMS, 2013, 63 (02) : 265 - 290
  • [5] Analysis of a subdiffusion model with a variable-order fractional calibration term
    Zheng, Xiangcheng
    APPLIED MATHEMATICS LETTERS, 2023, 142
  • [6] NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 1740 - 1760
  • [7] Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation
    R. M. Hafez
    Y. H. Youssri
    Computational and Applied Mathematics, 2018, 37 : 5315 - 5333
  • [8] Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation
    Hafez, R. M.
    Youssri, Y. H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5315 - 5333
  • [9] A compact finite difference scheme for variable order subdiffusion equation
    Cao, Jianxiong
    Qiu, Yanan
    Song, Guojie
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 140 - 149
  • [10] Analysis of Local Discontinuous Galerkin Method for the Variable-order Subdiffusion Equation with the Caputo-Hadamard Derivative
    Li, Wenbo
    Wei, Leilei
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (06): : 1095 - 1110