Impact of Glass Irradiation on Laser-Induced Breakdown Spectroscopy Data Analysis

被引:5
|
作者
Garrett, Londrea J. J. [1 ]
Morgan, Bryan W. W. [1 ]
Burger, Milos [1 ,2 ]
Lee, Yunu [3 ]
Kim, Hyeongbin [4 ]
Sabharwall, Piyush [5 ]
Choi, Sungyeol [4 ]
Jovanovic, Igor [1 ,2 ]
机构
[1] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Gerard Mourou Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
[3] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[4] Seoul Natl Univ, Dept Nucl Engn, Seoul 08826, South Korea
[5] Idaho Natl Lab, Idaho Falls, ID 83415 USA
关键词
laser-induced breakdown spectroscopy (LIBS); gamma irradiation; neutron irradiation; advanced reactors; optical absorption; EXPERIMENTAL STARK WIDTHS; SPECTRAL-LINES; INDUCED PLASMAS; LIBS; SHIFTS; ATOMS;
D O I
10.3390/s23020691
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Increased absorption of optical materials arising from exposure to ionizing radiation must be accounted for to accurately analyze laser-induced breakdown spectroscopy (LIBS) data retrieved from high-radiation environments. We evaluate this effect on two examples that mimic the diagnostics placed within novel nuclear reactor designs. The analysis is performed on LIBS data measured with 1% Xe gas in an ambient He environment and 1% Eu in a molten LiCl-KCl matrix, along with the measured optical absorption from the gamma-and neutron-irradiated low OH fused silica and sapphire glasses. Significant changes in the number of laser shots required to reach a 3 sigma detection level are observed for the Eu data, increasing by two orders of magnitude after exposure to a 1.7 x 10(17) n/cm(2) neutron fluence. For all cases examined, the spectral dependence of absorption results in the introduction of systematic errors. Moreover, if lines from different spectral regions are used to create Boltzmann plots, this attenuation leads to statistically significant changes in the temperatures calculated from the Xe II lines and Eu II lines, lowering them from 8000 +/- 610 K to 6900 +/- 810 K and from 15,800 +/- 400 K to 7200 +/- 800 K, respectively, for exposure to the 1.7 x 10(17) n/cm(2) fluence. The temperature range required for a 95% confidence interval for the calculated temperature is also broadened. In the case of measuring the Xe spectrum, these effects may be mitigated using only the longer-wavelength spectral region, where radiation attenuation is relatively small, or through analysis using the iterative Saha-Boltzmann method.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review
    Porizka, Pavel
    Klus, Jakub
    Kepes, Erik
    Prochazka, David
    Hahn, David W.
    Kaiser, Jozef
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2018, 148 : 65 - 82
  • [22] Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy
    余亮英
    陆继东
    陈文
    吴戈
    沈凯
    冯伟
    Plasma Science and Technology, 2005, (05) : 59 - 62
  • [23] Analysis of Minerals and Rocks by Laser-Induced Breakdown Spectroscopy
    Diaz Pace, Diego M.
    Gabriele, Norberto A.
    Garcimuno, Mayra
    D'Angelo, Cristian A.
    Bertuccelli, Graciela
    Bertuccelli, Daniela
    SPECTROSCOPY LETTERS, 2011, 44 (06) : 399 - 411
  • [24] Laser-induced breakdown spectroscopy analysis of energetic materials
    De Lucia, FC
    Harmon, RS
    McNesby, KL
    Winkel, RJ
    Miziolek, AW
    APPLIED OPTICS, 2003, 42 (30) : 6148 - 6152
  • [25] Elemental analysis of cotton by laser-induced breakdown spectroscopy
    Schenk, Emily R.
    Almirall, Jose R.
    APPLIED OPTICS, 2010, 49 (13) : C153 - C160
  • [26] Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis
    Zhang, Rongling
    Hu, Shunfan
    Ma, Changfei
    Zhang, Tianlong
    Li, Hua
    TrAC - Trends in Analytical Chemistry, 2024, 181
  • [27] Progress of Chemometrics in Laser-induced Breakdown Spectroscopy Analysis
    Zhang Tian-Long
    Wu Shan
    Tang Hong-Sheng
    Wang Kang
    Duan Yi-Xiang
    Li Hua
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 43 (06) : 939 - 948
  • [28] Analysis of bakery products by laser-induced breakdown spectroscopy
    Bilge, Gonca
    Boyaci, Ismail Hakki
    Eseller, Kemal Efe
    Tamer, Ugur
    Cakir, Serhat
    FOOD CHEMISTRY, 2015, 181 : 186 - 190
  • [29] Analysis of the State of the Art: Laser-Induced Breakdown Spectroscopy
    L'Heureux, Megan
    SPECTROSCOPY, 2015, 30 (06) : 74 - +
  • [30] Quantitative analysis of ceramics by laser-induced breakdown spectroscopy
    Kuzuya, M
    Murakami, M
    Maruyama, N
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2003, 58 (05) : 957 - 965