Validation of a Transcriptomic-Based Machine Learning Model to Establish the Endotype of SLE patients

被引:0
|
作者
Hubbard, Erika [1 ]
Bachali, Prathyusha [2 ]
Allison, Kathryn Kingsmore [1 ]
Grammer, Amrie [1 ]
Lipsky, Peter [1 ]
机构
[1] AMPEL BioSolut, Charlottesville, VA USA
[2] AMPEL BioSolut, Redmond, WA USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
0022
引用
收藏
页码:34 / 35
页数:2
相关论文
共 50 条
  • [1] A machine learning model for predicting patients with major depressive disorder: A study based on transcriptomic data
    Liu, Sitong
    Lu, Tong
    Zhao, Qian
    Fu, Bingbing
    Wang, Han
    Li, Ginhong
    Yang, Fan
    Huang, Juan
    Lyu, Nan
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [2] A machine learning-derived transcriptomic-based biomarker identifies low grade pancreatic ductal adenocarcinoma tumors and may help in treatment decision making
    Fu, Daniel
    Zambirinis, Constantinos P.
    CANCER RESEARCH, 2024, 84 (02)
  • [3] Transcriptomic-based selection of reference genes for quantitative real-time PCR in an insect endosymbiotic model
    Vallier, Agnes
    Dell'Aglio, Elisa
    Ferrarini, Mariana Galvao
    Hurtado, Ophelie
    Vincent-Monegat, Carole
    Heddi, Abdelaziz
    Rebollo, Rita
    Zaidman-Remy, Anna
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [4] Development and validation of a machine learning prognostic model based on an epigenomic signature in patients with pancreatic ductal adenocarcinoma
    Zaccaria, Gian Maria
    Altini, Nicola
    Mongelli, Valentina
    Marino, Francescomaria
    Bevilacqua, Vitoantonio
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 199
  • [5] Derivation and validation of a machine learning-based risk prediction model in patients with acute heart failure
    Misumi, Kayo
    Matsue, Yuya
    Nogi, Kazutaka
    Fujimoto, Yudai
    Kagiyama, Nobuyuki
    Kasai, Takatoshi
    Kitai, Takeshi
    Oishi, Shogo
    Akiyama, Eiichi
    Suzuki, Satoshi
    Yamamoto, Masayoshi
    Kida, Keisuke
    Okumura, Takahiro
    Nogi, Maki
    Ishihara, Satomi
    Ueda, Tomoya
    Kawakami, Rika
    Saito, Yoshihiko
    Minamino, Tohru
    JOURNAL OF CARDIOLOGY, 2023, 81 (06) : 531 - 536
  • [6] Development and Validation of a Machine Learning-Based Prognostic Model for Atypical Meningioma
    Kim, D.
    Kim, Y.
    Sung, W.
    Kim, I. A.
    Cho, J.
    Lee, J. H.
    Grassberger, C.
    Byun, H. K.
    Chang, W. I.
    Ren, L.
    Gong, Y.
    Wee, C. W.
    Hua, L.
    Yoon, H. I.
    MEDICAL PHYSICS, 2024, 51 (10) : 7968 - 7968
  • [7] Using blood routine indicators to establish a machine learning model for predicting liver fibrosis in patients with Schistosoma japonicum
    Liu, Yang
    Xie, Shudong
    Zhou, Jie
    Cai, Yu
    Zhang, Pengpeng
    Li, Junhui
    Ming, Yingzi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Feasibility of Using Machine Learning to Establish a Risk Prediction Model for Sudden Cardiac Death in Patients with Hypertrophic Cardiomyopathy
    Liu, Jie
    Wu, Guixin
    Feng, Xinxing
    Zhang, Shuai
    Wang, Dong
    Xu, Lianjun
    Jiang, Wen
    Sun, Xiaolu
    Kang, Lianming
    Huang, Xin
    Wang, Jizheng
    Song, Lei
    CIRCULATION, 2021, 144
  • [9] Validation of depression determinants in caregivers of dementia patients with machine learning algorithms and statistical model
    Cho, Kangrim
    Choi, Junggu
    Han, Sanghoon
    FRONTIERS IN MEDICINE, 2023, 10
  • [10] Development and validation of a machine learning model for classification of next glucose measurement in hospitalized patients
    Zale, Andrew D.
    Abusamaan, Mohammed S.
    McGready, John
    Mathioudakis, Nestoras
    ECLINICALMEDICINE, 2022, 44