Construction of Successive Proton Conduction Channels to Accelerate the Proton Conduction Process in Flexible Proton Exchange Membranes

被引:8
|
作者
Li, Qingquan [1 ]
Song, Di [1 ]
Gao, Weimin [1 ]
Wu, Dan [1 ]
Zhang, Niuniu [1 ]
Gao, Xinna [1 ]
Che, Quantong [1 ]
机构
[1] Northeastern Univ, Coll Sci, Dept Chem, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Kevlar nanofibers; successive proton conduction channels; phosphoric acid; stretched membrane; flexibleproton exchange membranes; GRAPHENE OXIDE; ELECTROLYTES; PERFORMANCE; FABRICATION;
D O I
10.1021/acsami.4c00192
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Successive proton conduction channels are constructed with the spin coating method in flexible proton exchange membranes (PEMs). In this research, phosphoric acid (PA) molecules are immobilized in the multilayered microstructure of Kevlar nanofibers and polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) polymer molecular chains. As a result, successive proton conduction channels can accelerate the proton conduction process in the prepared membrane with the multilayered microstructure. Additionally, the microstructure fractures of the composite membranes from the external force of folding and stretching operations are modified by the inner PA molecules. Notably, numerous PA molecules are further combined through formed intermolecular hydrogen bonding. The stretched membrane absorbs more PA molecules owing to the arrangement of PA molecules, Kevlar nanofibers, and SEBS molecular chains. The stretched membrane thus exhibits the enhanced proton conduction ability, such as the through-plane proton conductivity of 1.81 x 10-1 S cm-1 at 160 degrees C and that of 4.53 x 10-2 S cm-1 at 120 degrees C lasting for 600 h. Furthermore, the tensile stress of PA-doped stretched membranes reaches (3.91 +/- 0.40)-(6.15 +/- 0.43) MPa. A single proton exchange membrane fuel cell exhibits a peak power density of 483.3 mW cm-2 at 120 degrees C.
引用
收藏
页码:12686 / 12696
页数:11
相关论文
共 50 条
  • [31] ELECTRON AND PROTON CONDUCTION IN ICE
    WARMAN, JM
    KUNST, M
    DEHAAS, MP
    JOURNAL OF ELECTROSTATICS, 1982, 12 (APR) : 115 - 122
  • [32] Proton Conduction in Inorganic Phosphates
    Garzon, Fernando
    Kreller, Cortney
    Wilson, Mahlon
    Mukundan, Randachary
    Hieu Pham
    Henson, Neil
    Hartl, Monika
    Daemen, Luke
    IONIC AND MIXED CONDUCTING CERAMICS 9, 2014, 61 (01): : 159 - +
  • [33] THE MECHANISM OF PROTON CONDUCTION IN LECITHINS
    SZUNDI, I
    ACTA BIOCHIMICA ET BIOPHYSICA HUNGARICA, 1985, 20 (1-2) : 106 - 106
  • [34] Proton conduction of silicoantimonic acid
    Polevoj, B.G.
    Nastenko, N.N.
    Burmakin, E.I.
    Elektrokhimiya, 1992, 28 (10):
  • [35] On the complexity of proton conduction phenomena
    Kreuer, KD
    SOLID STATE IONICS, 2000, 136 : 149 - 160
  • [36] H-1-NMR, PROTON-EXCHANGE AND PROTON CONDUCTION OF AMMONIUM TUNGSTOPHOSPHORIC HYDRATES
    SHTEINBERG, VG
    SHUMM, BA
    EROFEEV, LN
    KOROSTELEVA, AI
    LEONOVA, LS
    UKSHE, EA
    FIZIKA TVERDOGO TELA, 1989, 31 (09): : 128 - 132
  • [37] Preparation and characterization of proton exchange membranes with through-membrane proton conducting channels
    Hang Wang
    Gaokai Zhang
    Xiaojie Li
    Xupin Zhuang
    Bowen Cheng
    Ionics, 2017, 23 : 2359 - 2366
  • [38] Preparation and characterization of proton exchange membranes with through-membrane proton conducting channels
    Wang, Hang
    Zhang, Gaokai
    Li, Xiaojie
    Zhuang, Xupin
    Cheng, Bowen
    IONICS, 2017, 23 (09) : 2359 - 2366
  • [39] Titanium phosphorus oxide membranes for proton conduction at intermediate temperatures
    Tsuru, T
    Yagi, Y
    Kinoshita, Y
    Asada, M
    SOLID STATE IONICS, 2003, 158 (3-4) : 343 - 350
  • [40] Characterization of hybrid organic and inorganic functionalised membranes for proton conduction
    Sunarso, J.
    Chen, C. Y.
    Wang, L. Z.
    Costa, R. F. Dalla
    Lu, G. Q.
    da Costa, J. C. Diniz
    SOLID STATE IONICS, 2008, 179 (13-14) : 477 - 482