Improved Performance of Hole-Transporting Material-Free Perovskite Solar Cells Using a Low-Temperature Printed Carbon Paste

被引:3
|
作者
Tountas, Marinos [1 ]
Polyzoidis, Christos [1 ]
Loizos, Michalis [1 ]
Rogdakis, Konstantinos [1 ,2 ]
Kymakis, Emmanuel [1 ,2 ]
机构
[1] Hellen Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
[2] HMU, Univ Res & Innovat Ctr, Inst Emerging Technol I EMERGE, Iraklion 71410, Greece
关键词
perovskite solar cells; carbon electrodes; carbon-based perovskite solar cells (C-PSCs); solution processing; large-area; scalability; SPIRO-OMETAD; DEGRADATION;
D O I
10.1021/acsaelm.3c01132
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The combination of chemically and structurally unstable hole transport materials (HTMs) and the metal ion diffusion from counter electrodes (CEs) toward the perovskite layer are reported as primary causes of the insufficient stability of perovskite solar cells (PSCs) and modules. Carbon-based CEs (C-CEs) directly deposited atop the perovskite layer without interposing any HTM represent a promising path to improving PSC stability while lowering the environmental impact and the manufacturing cost. In this work, we present a cost-effective approach to fabricating C-CEs using two different carbon pastes with distinct formulations, successfully replacing expensive metal-based electrodes. We engineered HTM-free PSCs based on a mesoscopic n-i-p structure and printable C-CEs (C-PSCs), with a 2D perovskite passivation layer as an electron-blocking layer between the perovskite and the C-CE. The devices using a low-temperature processed carbon counter electrode (LTPC-CE) improved the performance of the devices compared to the cells produced with a medium-temperature processed carbon counter electrode (MTPC-CE). This behavior is associated with enhanced charge carrier lifetime, charge transfer, and charge extraction processes enabled by effective solvent removal during the C-CE deposition as well as the highly electrically conductive pathways offered by graphene flakes. In particular, in small-area devices, the power conversion efficiencies (PCE) of champion devices using the LTPC-CE were increased from 14.99% for the MTPC-CE cell to 17.68%. In large-area devices, PCE improved from 12.24 to 15.01%. Transient photovoltage and photocurrent measurements confirmed the enhanced performance of the devices incorporating the LTP graphene-based carbon paste as the CE. Our findings highlight the high potential of low-temperature processed carbon electrodes for stable and efficient PSCs, offering a promising approach for the massive and affordable production of perovskite-based photovoltaics.
引用
收藏
页码:6228 / 6235
页数:8
相关论文
共 50 条
  • [41] Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells
    Karimi, E.
    Ghorashi, S. M. B.
    OPTIK, 2017, 130 : 650 - 658
  • [42] Thionation Enhances the Performance of Polymeric Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells
    Zhang, Haichang
    Liu, Maning
    Yang, Wenjun
    Judin, Lauri
    Hukka, Terttu, I
    Priimagi, Arri
    Deng, Zhifeng
    Vivo, Paola
    ADVANCED MATERIALS INTERFACES, 2019, 6 (18):
  • [43] High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material
    Jiang, Xiaoqing
    Yu, Ze
    Zhang, Yuchen
    Lai, Jianbo
    Li, Jiajia
    Gurzadyan, Gagik G.
    Yang, Xichuan
    Sun, Licheng
    SCIENTIFIC REPORTS, 2017, 7
  • [44] High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material
    Xiaoqing Jiang
    Ze Yu
    Yuchen Zhang
    Jianbo Lai
    Jiajia Li
    Gagik G. Gurzadyan
    Xichuan Yang
    Licheng Sun
    Scientific Reports, 7
  • [45] Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells
    Zhang, Hua
    Wang, Huan
    Zhu, Hongmei
    Chueh, Chu-Chen
    Chen, Wei
    Yang, Shihe
    Jen, Alex K-Y
    ADVANCED ENERGY MATERIALS, 2018, 8 (13)
  • [46] An unsymmetrical bifluorenylidene-fluorene based hole-transporting material for perovskite solar cells
    Kumar, Vinay
    Chen, Jianlin
    Singh, Praveen Kumar
    Yadagiri, Bommaramoni
    Kumar, Deepak
    Liu, Xuepeng
    Dai, Songyuan
    Singh, Surya Prakash
    SUSTAINABLE ENERGY & FUELS, 2025,
  • [47] Corannulene-based hole-transporting material for efficient and stable perovskite solar cells
    An, Ming-Wei
    Wu, Bao-Shan
    Wang, Shun
    Chen, Zuo-Chang
    Su, Yin
    Deng, Lin-Long
    Li, Shu-Hui
    Nan, Zi-Ang
    Tian, Han-Rui
    Liu, Xiao-Lin
    Yun, Da-Qin
    Zhang, Qianyan
    Xie, Su-Yuan
    Zheng, Lan-Sun
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12):
  • [48] Nickel Cobaltite Nanosheet Layer as Hole-Transporting Material in Inverted Perovskite Solar Cells
    Li, Guodong
    Dong, Chunhua
    Wang, Rongbo
    CHEMISTRYSELECT, 2022, 7 (26):
  • [49] Fabrication of Planar Perovskite Solar Cells Using Ternary Metal Oxide Nanocomposite as Hole-Transporting Material
    Muthukumaran, K. P.
    Arjun, V.
    Nithya, A.
    Thangarasu, Sadhasivam
    Oh, Tae Hwan
    Karuppuchamy, S.
    ENERGIES, 2023, 16 (09)
  • [50] Highly Efficient and Stable Perovskite Solar Cells Using a Dopant-Free Inexpensive Small Molecule as the Hole-Transporting Material
    Li, Yong
    Scheel, Kyle R.
    Clevenger, Robert G.
    Shou, Wan
    Pan, Heng
    Kilway, Kathleen V.
    Peng, Zhonghua
    ADVANCED ENERGY MATERIALS, 2018, 8 (23)