Constraining nuclear symmetry energy with the charge radii of mirror-pair nuclei

被引:22
|
作者
An, Rong [1 ,2 ,3 ]
Sun, Shuai [1 ]
Cao, Li-Gang [1 ,2 ]
Zhang, Feng-Shou [1 ,2 ,4 ]
机构
[1] Beijing Normal Univ, Coll Nucl Sci & Technol, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[2] Beijing Acad Sci & Technol, Inst Radiat Technol, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[3] Chinese Acad Sci, Inst Modern Phys, CAS Key Lab High Precis Nucl Spect, Lanzhou 730000, Peoples R China
[4] Natl Lab Heavy Ion Accelerator Lanzhou, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Symmetry energy; Charge radii; Mirror nuclei; NEUTRON SKIN THICKNESS; SUBSATURATION DENSITIES; SKYRME PARAMETRIZATION; ISOSPIN; DIFFERENCE; RESONANCES; SUBNUCLEAR; EQUATION; STATE;
D O I
10.1007/s41365-023-01269-1
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter. Based on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter (L) of symmetry energy at the nuclear saturation density, an analysis of the calibrated slope parameter L was performed in finite nuclei. In this study, relativistic and nonrelativistic energy density functionals were employed to constrain the nuclear symmetry energy through the available databases of the mirror-pair nuclei Ca-36-S-36, Ca-38-Ar-38, and Ni-54-Fe-54. The deduced nuclear symmetry energy was located in the range 29.89-31.85 MeV, and L of the symmetry energy essentially covered the range 22.50-51.55 MeV at the saturation density. Moreover, the extracted L-S at the sensitivity density p(s )= 0.10 fm(-3) was located in the interval range 30.52-39.76 MeV.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Constraining equation of state of nuclear matter by cross section measurements of mirror nuclei
    Xu, Jun-Yao
    Li, Zheng-Zheng
    Sun, Bao-Hua
    Niu, Yi-Fei
    Roca-Maza, Xavier
    Sagawa, Hiroyuki
    Tanihata, Isao
    PHYSICS LETTERS B, 2022, 833
  • [32] Nuclear expansion and symmetry energy of hot nuclei
    Shetty, D. V.
    Souliotis, G. A.
    Galanopoulos, S.
    Kohley, Z.
    Soisson, S. N.
    Stein, B. C.
    Wuenschel, S.
    Yennello, S. J.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (07)
  • [33] Isospin asymmetry in nuclei and nuclear symmetry energy
    Mukhopadhyay, Tapan
    Basu, D. N.
    ACTA PHYSICA POLONICA B, 2007, 38 (10): : 3225 - 3236
  • [34] Constraining the slope parameter of the symmetry energy from nuclear structure
    Inakura, T.
    Nakada, H.
    PHYSICAL REVIEW C, 2015, 92 (06):
  • [35] Constraining the density dependence of the symmetry energy from nuclear masses
    Agrawal, B. K.
    De, J. N.
    Samaddar, S. K.
    Colo, G.
    Sulaksono, A.
    PHYSICAL REVIEW C, 2013, 87 (05):
  • [36] CONSTRAINING THE DENSITY DEPENDENCE OF THE SYMMETRY ENERGY WITH NUCLEAR STRUCTURE PROPERTIES
    Jiang, Wei-Zhou
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (8-9) : 1720 - 1726
  • [37] Constraining the Nuclear Symmetry Energy with Multimessenger Resonant Shattering Flares
    Neill, Duncan
    Preston, Rebecca
    Newton, William G.
    Tsang, David
    PHYSICAL REVIEW LETTERS, 2023, 130 (11)
  • [39] Charge radii of exotic nuclei:: nuclear results versus isotopic shift calculations
    Tomaselli, M
    Liu, LC
    Fritzsche, S
    Kühl, T
    Ursescu, D
    Neumayer, P
    Wojtaszek, A
    NUCLEAR PHYSICS A, 2004, 746 : 587C - 590C
  • [40] Attempt to connect the nuclear charge radii with the experimental α decay data for superheavy nuclei
    Qian, Yibin
    16TH INTERNATIONAL SYMPOSIUM ON CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS (CGS16), 2018, 178