ADU-Net: Semantic segmentation of satellite imagery for land cover classification

被引:2
|
作者
Talha, Muhammad [1 ]
Bhatti, Farrukh A. [1 ]
Ghuffar, Sajid [2 ]
Zafar, Hamza [1 ]
机构
[1] Inst Space Technol, Dept Elect Engn, iVISION Lab, Islamabad 45730, Pakistan
[2] Inst Space Technol, Dept Space Sci, Islamabad 45730, Pakistan
关键词
Remote sensing; GID dataset; Land cover; Classification; Semantic segmentation; Attention mechanism; FEATURES; DECODER;
D O I
10.1016/j.asr.2023.05.007
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Semantic Segmentation is an important problem in many vision related tasks. Land use and land cover classification involves semantic segmentation of satellite imagery and plays a vital role in many applications. In this paper, we propose an extended U-Net architecture with dense decoder connections and attention mechanism for pixel wise classification of satellite imagery named Attention Dense UNet (ADU-Net). We further evaluate the effect of different upsampling strategies in the decoder part of the U-Net architecture. We evaluate our models on the Gaofen Image Dataset (GID) for landcover classification consisting of five classes: built-up, forest, farmland, meadow and water. The experiments on the GID dataset show better performance than the previous approaches. Our proposed architecture delivers more than 4% higher mIoU and F1-score than the baseline U-Net. Moreover, our proposed architecture achieves an F1score of 87.21% and mIoU of 77.66% on the GID dataset. Our evaluations shows that data-dependent upsampling layer achieves higher accuracy than the Transposed Convolution, Pixel Shuffle and Bilinear upsampling layers. & COPY; 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1780 / 1788
页数:9
相关论文
共 50 条
  • [31] Integrating Convolutional Neural Network and Multiresolution Segmentation for Land Cover and Land Use Mapping Using Satellite Imagery
    Atik, Saziye Ozge
    Ipbuker, Cengizhan
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [32] Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia
    González-Vélez, Juan C.
    Martinez-Vargas, Juan D.
    Torres-Madronero, Maria C.
    [J]. Communications in Computer and Information Science, 2022, 1532 CCIS : 306 - 317
  • [33] Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia
    Gonzalez-Velez, Juan C.
    Martinez-Vargas, Juan D.
    Torres-Madronero, Maria C.
    [J]. SMART TECHNOLOGIES, SYSTEMS AND APPLICATIONS, SMARTTECH-IC 2021, 2022, 1532 : 306 - 317
  • [34] INCORPORATING SPECTRAL UNMIXING IN SATELLITE IMAGERY SEMANTIC SEGMENTATION
    Baghbaderani, Razieh Kaviani
    Qi, Hairong
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2449 - 2453
  • [35] Semantic Segmentation for Ships Detection from Satellite Imagery
    Hordiiuk, Dariia
    Oliinyk, Ievgenii
    Hnatushenko, Volodymyr
    Maksymov, Kostiantyn
    [J]. 2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 454 - 457
  • [36] Semantic Segmentation of Land Cover in Urban Areas by Fusing Multisource Satellite Image Time Series
    Yan, Jining
    Liu, Jingwei
    Liang, Dong
    Wang, Yi
    Li, Jun
    Wang, Lizhe
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 15
  • [37] Land cover segmentation of aerial imagery using SegNet
    Lee, S.
    Park, S.
    Son, S.
    Han, J.
    Kim, S.
    Kim, J.
    [J]. EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS X, 2019, 11156
  • [38] Land Use/Land Cover Classification of Google Earth Imagery
    Sowmya, D. R.
    Hegde, Vishwas S.
    Suhas, J.
    Hegdekatte, Raghavendra V.
    Shenoy, P. Deepa
    Venugopal, K. R.
    [J]. 2017 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2017), 2017, : 10 - 13
  • [39] Deep Aggregation Net for Land Cover Classification
    Kuo, Tzu-Sheng
    Tseng, Keng-Sen
    Yan, Jia-Wei
    Liu, Yen-Cheng
    Wang, Yu-Chiang Frank
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 247 - 251
  • [40] Enhancing the Interpretability of Genetic Fuzzy Classifiers in Land Cover Classification from Hyperspectral Satellite Imagery
    Stavrakoudis, Dimitris G.
    Galidaki, Georgia N.
    Gitas, Ioannis Z.
    Theocharis, John B.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,