Order of Convergence, Extensions of Newton-Simpson Method for Solving Nonlinear Equations and Their Dynamics

被引:5
|
作者
George, Santhosh [1 ]
Kunnarath, Ajil [1 ]
Sadananda, Ramya [1 ]
Padikkal, Jidesh [1 ]
Argyros, Ioannis K. [2 ]
机构
[1] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Surathkal 575025, India
[2] Cameron Univ, Dept Comp & Math Sci, Lawton, OK 73505 USA
关键词
order of convergence; Cordero-Torregrosa method; iterative method; Banach space; QUADRATURE-FORMULAS; ITERATIVE METHODS; SYSTEMS;
D O I
10.3390/fractalfract7020163
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Local convergence of order three has been established for the Newton-Simpson method (NS), provided that derivatives up to order four exist. However, these derivatives may not exist and the NS can converge. For this reason, we recover the convergence order based only on the first two derivatives. Moreover, the semilocal convergence of NS and some of its extensions not given before is developed. Furthermore, the dynamics are explored for these methods with many illustrations. The study contains examples verifying the theoretical conditions.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] ON THE CONVERGENCE OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING SINGULAR EQUATIONS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [32] Improved convergence and complexity analysis of Newton's method for solving equations
    Argyros, Ioannis K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (01) : 67 - 73
  • [33] Achieving higher order of convergence for solving systems of nonlinear equations
    Xiao, Xiaoyong
    Yin, Hongwei
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 251 - 261
  • [34] A stable family with high order of convergence for solving nonlinear equations
    Cordero, Alicia
    Lotfi, Taher
    Mahdiani, Katayoun
    Torregrosa, Juan R.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 240 - 251
  • [35] STUDY OF LOCAL CONVERGENCE OF NEWTON-LIKE METHODS FOR SOLVING NONLINEAR EQUATIONS
    Kumar, Deepak
    Sharma, Janak Raj
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 18 (01): : 127 - 140
  • [36] Modifications of higher-order convergence for solving nonlinear equations
    Liu, Xi-Lan
    Wang, Xiao-Rui
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5105 - 5111
  • [37] New Variants of Newton's Method for Solving Nonlinear Equations
    Sapkota, Buddhi Prasad
    Jnawali, Jivandhar
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2419 - 2430
  • [38] Newton waveform relaxation method for solving algebraic nonlinear equations
    Wu, Shulin
    Huang, Chengming
    Liu, Yong
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 553 - 560
  • [39] Convergence of an iterative method for solving a class of nonlinear equations
    Wang, Xiuhua
    Kou, Jisheng
    Shi, Dongyang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (07) : 1322 - 1328
  • [40] An iterative method with quartic convergence for solving nonlinear equations
    Saeed, Rostam K.
    Aziz, Kawa M.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) : 435 - 440