Dynamical vertex correction to the generalized Kadanoff-Baym Ansatz

被引:4
|
作者
Kalvova, A. [1 ]
Spicka, V. [1 ]
Velicky, B. [1 ]
Lipavsky, P. [2 ]
机构
[1] Inst Phys AS CR, Prague 8, Czech Republic
[2] Charles Univ Prague, Fac Math & Phys, Ke Karlovu 5, Prague 2, Czech Republic
关键词
D O I
10.1209/0295-5075/acad9b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized Kadanoff-Baym Ansatz, used to simplify the non-equilibrium Green's functions to the kinetic equation for the density matrix, leads to an incorrect dynamics of a system if the self-energy has a rich energy spectrum. We propose an approximation of the vertex correction which dynamically changes with the density matrix while it benefits from simplicity of stationary propagators. On the molecular bridge between ferromagnetic leads, we demonstrate that this simple vertex fixes the failure of the kinetic equation on a negligible computational cost.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Time propagation of the Kadanoff-Baym equations for inhomogeneous systems
    Stan, Adrian
    Dahlen, Nils Erik
    van Leeuwen, Robert
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (22):
  • [32] Successes and Failures of Kadanoff-Baym Dynamics in Hubbard Nanoclusters
    von Friesen, M. Puig
    Verdozzi, C.
    Almbladh, C. -O.
    PHYSICAL REVIEW LETTERS, 2009, 103 (17)
  • [33] The non-equilibrium Green function approach to inhomogeneous quantum many-body systems using the generalized Kadanoff-Baym ansatz
    Hermanns, S.
    Balzer, K.
    Bonitz, M.
    PHYSICA SCRIPTA, 2012, T151
  • [34] Kadanoff-Baym approach to flavour mixing and oscillations in resonant leptogenesis
    Dev, P. S. Bhupal
    Millington, Peter
    Pilaftsis, Apostolos
    Teresi, Daniele
    NUCLEAR PHYSICS B, 2015, 891 : 128 - 158
  • [35] The Kadanoff-Baym approach to double excitations in finite systems
    Sakkinen, N.
    Manninen, M.
    van Leeuwen, R.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [36] Exact conservation laws of the gradient expanded Kadanoff-Baym equations
    Knoll, J
    Ivanov, YB
    Voskresensky, DN
    ANNALS OF PHYSICS, 2001, 293 (02) : 126 - 146
  • [37] Stochastic interpretation of Kadanoff-Baym equations and their relation to Langevin processes
    Greiner, C
    Leupold, S
    ANNALS OF PHYSICS, 1998, 270 (02) : 328 - 390
  • [38] Baryon asymmetry of the Universe without Boltzmann or Kadanoff-Baym equations
    Gagnon, Jean-Sebastien
    Shaposhnikov, Mikhail
    PHYSICAL REVIEW D, 2011, 83 (06):
  • [39] Artificial damping in the Kadanoff-Baym dynamics of small Hubbard chains
    von Friesen, M. Puig
    Verdozzi, C.
    Almbladh, C. -O.
    PROGRESS IN NONEQUILIBRIUM GREEN'S FUNCTIONS IV, 2010, 220
  • [40] Kadanoff-Baym Equations for Interacting Systems with Dissipative Lindbladian Dynamics
    Stefanucci, Gianluca
    PHYSICAL REVIEW LETTERS, 2024, 133 (06)