Emerging trends in van der Waals 2D TMD heterojunction bipolar transistors

被引:5
|
作者
Aftab, Sikandar [1 ]
Hegazy, Hosameldin Helmy [5 ,6 ]
Iqbal, Muhammad Zahir [2 ]
Rim, You Seoung [3 ,4 ]
机构
[1] Sejong Univ, Dept Intelligent Mechatron Engn, Seoul 05006, South Korea
[2] GIK Inst Engn Sci & Technol, Fac Engn Sci, Nanotechnol Res Lab, Topi 23640, Khyber Pakhtunk, Pakistan
[3] Sejong Univ, Dept Intelligent Mechatron Engn & Convergence Engn, Seoul 05006, South Korea
[4] Sejong Univ, Dept Semicond Syst Engn, Seoul 05006, South Korea
[5] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
[6] King Khalid Univ, Fac Sci, Dept Phys, POB 9004, Abha, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
P-N-JUNCTION; BLACK PHOSPHORUS; ELECTRONIC-STRUCTURE; WSE2; PHASE; PHOTOTRANSISTOR; TRANSITION; INTERFACE; STEP;
D O I
10.1039/d2tc04108a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The bipolar junction transistor, which is also known as a BJT, has become an essential component for many modern circuits that are used for high-speed computing and communication, which is due to its ability of being able to amplify high-power signals. 2D materials have the potential to be used in order to make BJTs with high amplification and frequency, because they can be naturally thin. Also, the properties of their parts can be changed in a variety of ways. We attempted to summarize the most recent and promising strategies in this review article, which can be used to develop the lateral and vertical BJT architectures. The majority of BJT nanodevices are fabricated using mechanical exfoliation of ultrathin 2D materials in order to explore their electrical behavior. This enables the creation of NPN or PNP BJTs from an intrinsic semiconductor or with different nanomaterials. A comparison of the performance and the characteristics of the BJT devices, which are based on 2D materials, was also conducted. In addition, a discussion of the current challenges and potential solutions is outlined. We hope that this summary of the current research of BJTs based on nanomaterials can be used in many different ways, and will help to progress the development of high-speed computing with integrated circuits that will usher in a new era of digital technology.
引用
收藏
页码:1648 / 1667
页数:20
相关论文
共 50 条
  • [41] Planar hyperbolic polaritons in 2D van der Waals materials
    Wang, Hongwei
    Kumar, Anshuman
    Dai, Siyuan
    Lin, Xiao
    Jacob, Zubin
    Oh, Sang-Hyun
    Menon, Vinod
    Narimanov, Evgenii
    Kim, Young Duck
    Wang, Jian-Ping
    Avouris, Phaedon
    Moreno, Luis Martin
    Caldwell, Joshua
    Low, Tony
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [42] Coexistence of ferroelectricity and antiferroelectricity in 2D van der Waals multiferroic
    Wu, Yangliu
    Zeng, Zhaozhuo
    Lu, Haipeng
    Han, Xiaocang
    Yang, Chendi
    Liu, Nanshu
    Zhao, Xiaoxu
    Qiao, Liang
    Ji, Wei
    Che, Renchao
    Deng, Longjiang
    Yan, Peng
    Peng, Bo
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [43] 2D van der Waals Inorganic Oxychloride Proton Conductor
    Ohta, Shingo
    Nozaki, Hiroshi
    Wang, Liang
    Jia, Hongfei
    Singh, Nikhilendra
    Arthur, Timothy
    Hashemi, Daniel
    Iizuka, Hideo
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 5490 - 5497
  • [44] Do 2D materials stack in a van der Waals fashion?
    Tejeda, Antonio
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (35)
  • [45] Synthesis, engineering, and theory of 2D van der Waals magnets
    Blei, M.
    Lado, J. L.
    Song, Q.
    Dey, D.
    Erten, O.
    Pardo, V.
    Comin, R.
    Tongay, S.
    Botana, A. S.
    APPLIED PHYSICS REVIEWS, 2021, 8 (02):
  • [46] Van der Waals stacked 2D layered materials for optoelectronics
    Zhang, Wenjing
    Wang, Qixing
    Chen, Yu
    Wang, Zhuo
    Wee, Andrew T. S.
    2D MATERIALS, 2016, 3 (02):
  • [47] van der Waals epitaxy: 2D materials and topological insulators
    Walsh, Lee A.
    Hinkle, Christopher L.
    APPLIED MATERIALS TODAY, 2017, 9 : 504 - 515
  • [48] Flexible electronics and optoelectronics of 2D van der Waals materials
    Yu, Huihui
    Cao, Zhihong
    Zhang, Zheng
    Zhang, Xiankun
    Zhang, Yue
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (04) : 671 - 690
  • [49] Opto-valleytronics in the 2D van der Waals heterostructure
    Abdullah Rasmita
    Wei-bo Gao
    Nano Research, 2021, 14 : 1901 - 1911
  • [50] Robust 2D Topological Insulators in van der Waals Heterostructures
    Kou, Liangzhi
    Wu, Shu-Chun
    Felser, Claudia
    Frauenheim, Thomas
    Chen, Changfeng
    Yan, Binghai
    ACS NANO, 2014, 8 (10) : 10448 - 10454