EXISTENCE AND ASYMPTOTICAL BEHAVIOR OF GROUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER-KIRCHHOFF TYPE EQUATIONS

被引:0
|
作者
Xiong, Chawen [1 ]
Chen, Chunfang [1 ]
Chen, Jianhua [1 ]
Sun, Jijiang [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
来源
FIXED POINT THEORY | 2024年 / 25卷 / 01期
关键词
Schrodinger-Kirchhoff equation; fractional p-Laplacian; ground state solution; asymptotical behavior; steep well potential; fixed point; POSITIVE SOLUTIONS;
D O I
10.24193/fpt-ro.2025.1.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Kirchhoff type equations involving the fractional p -Laplacian M([u](s,p)(p))(-Delta)(p)(s)u + (1 + lambda g(x))u(p-1) = H(x)u(q-1), u > 0, x is an element of R-N, where s is an element of (0, 1), 2 <= p < infinity, ps < N and (-Delta)(p)(s) is the fractional p -Laplacian operator. M(t) = a + bt(k), where a, k > 0 and b >= 0 are constants. lambda > 0 is a real parameter. p(k + 1) < q < p(s)(& lowast;), where p(s)(& lowast;)= Np/ N-ps is the fractional Sobolev critical exponent. Under some appropriate assumptions on g(x) and H(x), we obtain the existence of positive ground state solutions and discuss their asymptotical behavior via the method used by Bartsch and Wang [Multiple positive solutions for a nonlinear Schrodinger equation. Z. Angew. Math. Phys. 51 (2000) 366-384].
引用
收藏
页码:399 / 418
页数:20
相关论文
共 50 条
  • [41] Existence and multiplicity of solutions for fractional Schrodinger-p-Kirchhoff equations in RN
    Tao, Huo
    Li, Lin
    Winkert, Patrick
    FORUM MATHEMATICUM, 2025, 37 (02) : 373 - 398
  • [42] Asymptotical behavior of ground state solutions for critical quasilinear Schrodinger equation
    Chen, Yongpeng
    Guo, Yuxia
    Tang, Zhongwei
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 21 - 46
  • [43] Positive solutions for nonlinear Schrodinger-Kirchhoff equations in R3
    Chen, Wei
    Fu, Zunwei
    Wu, Yue
    APPLIED MATHEMATICS LETTERS, 2020, 104
  • [44] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR NONLINEAR SCHRoDINGER-KIRCHHOFF-TYPE EQUATIONS
    Chen, Haibo
    Liu, Hongliang
    Xu, Liping
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) : 201 - 215
  • [45] Orbital Stability of Nonlinear Schrodinger-Kirchhoff Equations
    Lan, Enhao
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [46] Existence of Ground States for Fractional Kirchhoff Equations
    Qingjun LOU
    Zhiqing HAN
    JournalofMathematicalResearchwithApplications, 2018, 38 (06) : 623 - 635
  • [47] GROUND STATE SIGN-CHANGING SOLUTIONS FOR FRACTIONAL KIRCHHOFF TYPE EQUATIONS IN R
    Che, Guofengc
    Chen, Haibo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 2017 - 2036
  • [48] Multiplicity Results of Solutions to Non-Local Magnetic Schrodinger-Kirchhoff Type Equations in RN
    Park, Kisoeb
    AXIOMS, 2022, 11 (02)
  • [49] Ground State Solutions for Kirchhoff Type Quasilinear Equations
    Liu, Xiangqing
    Zhao, Junfang
    ADVANCED NONLINEAR STUDIES, 2019, 19 (02) : 353 - 373
  • [50] GROUND STATE SOLUTIONS FOR QUASILINEAR EQUATIONS OF KIRCHHOFF TYPE
    Zhao, Junfang
    Liu, Xiangqing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,