MPANet: Multi-scale Pyramid Attention Network for Collaborative Modeling Spatio-Temporal Patterns of Default Mode Network

被引:0
|
作者
Yuan, Hang [1 ,2 ]
Li, Xiang [1 ,2 ]
Wei, Benzheng [1 ,2 ]
机构
[1] Shandong Univ Tradit Chinese Med, Ctr Med Artificial Intelligence, Qingdao 266112, Shandong, Peoples R China
[2] Shandong Univ Tradit Chinese Med, Qingdao Acad Chinese Med Sci, Qingdao 266112, Shandong, Peoples R China
关键词
Shallow feature characterization; Holistic modeling; Spatio-temporal patterns; Default mode network; ORGANIZATION; OVERLAP;
D O I
10.1007/978-981-99-8388-9_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The functional activity of the default mode network (DMN) in the resting state is complex and spontaneous. Modeling spatio-temporal patterns of DMN based on four-dimensional Resting-state functional Magnetic Resonance Imaging (Rs-fMRI) provides a basis for exploring spontaneous brain functional activities. However, how to utilize spatio-temporal features to complete the multi-level description of 4D Rs-fMRI with diverse characteristics in the shallow stage of the model and accurately characterize the DMN holistic spatio-temporal patterns remains challenging in the current DMN spatio-temporal patterns modeling. To this end, we propose a Multi-scale Pyramid Attention Network (MPANet) to focus on shallow features and model the spatio-temporal patterns of resting-state personalized DMN. Specifically, in the spatial stage, we design a multi-scale pyramid block in the shallow layer to expand the receptive field and extract granular information at different levels, which realize feature enhancement and guides the model to characterize the DMN spatial pattern. In the temporal stage, parallel guidance from spatial to the temporal pattern is achieved through the fast down-sampling operation and introduction of multi-head attention blocks for a more effective fusion of spatio-temporal features. The results based on a publicly available dataset demonstrate that MPANet outperforms other state-of-the-art methods. This network presents a robust tool for modeling the spatio-temporal patterns of individuals with DMN, and its exceptional performance suggests promising potential for clinical applications.
引用
收藏
页码:416 / 425
页数:10
相关论文
共 50 条
  • [21] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [22] Group multi-scale attention pyramid network for traffic sign detection
    Shen, Lili
    You, Liang
    Peng, Bo
    Zhang, Chuhe
    NEUROCOMPUTING, 2021, 452 : 1 - 14
  • [23] MUSCAT: Multi-Scale Spatio-Temporal Learning with Application to Climate Modeling
    Xu, Jianpeng
    Liu, Xi
    Wilson, Tyler
    Tan, Pang-Ning
    Hatami, Pouyan
    Luo, Lifeng
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2912 - 2918
  • [24] Multi-scale, numerical modeling of spatio-temporal signaling in cone phototransduction
    Klaus, Colin
    Caruso, Giovanni
    Gurevich, Vsevolod V.
    DiBenedetto, Emmanuele
    PLOS ONE, 2019, 14 (07):
  • [25] Bayesian Multi-Scale Spatio-Temporal Modeling of Precipitation in the Indus Watershed
    Christensen, Michael F.
    Heaton, Matthew J.
    Rupper, Summer
    Reese, C. Shane
    Christensen, William F.
    FRONTIERS IN EARTH SCIENCE, 2019, 7
  • [26] A Spatio-Temporal Multi-Scale Binary Descriptor
    Xompero, Alessio
    Lanz, Oswald
    Cavallaro, Andrea
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 4362 - 4375
  • [27] Multi-Scale Inter-Communication Spatio-Temporal Network for Video Compression Artifacts Reduction
    Zhang, Tingrong
    Teng, Qizhi
    He, Xiaohai
    Ren, Chao
    Chen, Zhengxin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (03) : 1229 - 1233
  • [28] A multi-scale area-interaction model for spatio-temporal point patterns
    Iftimi, Adina
    van Lieshout, Marie-Colette
    Montes, Francisco
    SPATIAL STATISTICS, 2018, 26 : 38 - 55
  • [29] Network Analysis Using Spatio-Temporal Patterns
    Miranda, Gisele H. B.
    Machicao, Jeaneth
    Bruno, Odemir M.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [30] MAPPNet: A Multi-Scale Attention Pyramid Pooling Network for Dental Calculus Segmentation
    Nie, Tianyu
    Yao, Shihong
    Wang, Di
    Wang, Conger
    Zhao, Yishi
    APPLIED SCIENCES-BASEL, 2024, 14 (16):