Strong backward error analysis of symplectic integrators for stochastic Hamiltonian systems

被引:0
|
作者
D'Ambrosio, Raffaele [1 ]
Di Giovacchino, Stefano [1 ]
机构
[1] Univ Aquila, Dept Informat Engn & Comp Sci & Math, Laquila, Italy
关键词
Stochastic Hamiltonian systems; Modified differential equations; Symplectic methods; Strong backward error analysis; RUNGE-KUTTA METHODS; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.amc.2023.128488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Backward error analysis is a powerful tool in order to detect the long-term conservative behavior of numerical methods. In this work, we present a long-term analysis of symplectic stochastic numerical integrators, applied to Hamiltonian systems with multiplicative noise. We first compute and analyze the associated stochastic modified differential equations. Then, suitable bounds for the coefficients of such equations are provided towards the computation of long-term estimates for the Hamiltonian deviations occurring along the aforementioned numerical dynamics. This result generalizes Benettin-Giorgilli Theorem to the scenario of stochastic symplectic methods. Finally, specific numerical methods are considered, in order to provide a numerical evidence confirming the effectiveness of the theoretical investigation.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] The life-span of backward error analysis for numerical integrators
    Hairer, E
    Lubich, C
    NUMERISCHE MATHEMATIK, 1997, 76 (04) : 441 - 462
  • [42] Backward Error Analysis and the Substitution Law for Lie Group Integrators
    Alexander Lundervold
    Hans Munthe-Kaas
    Foundations of Computational Mathematics, 2013, 13 : 161 - 186
  • [43] The life-span of backward error analysis for numerical integrators
    E. Hairer
    C. Lubich
    Numerische Mathematik, 1997, 76 : 441 - 462
  • [44] Comparing maps to symplectic integrators in a galactic type Hamiltonian
    Caranicolas, ND
    Papadopoulos, NJ
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2003, 24 (3-4) : 85 - 97
  • [45] Comparing maps to symplectic integrators in a galactic type Hamiltonian
    N. D. Caranicolas
    N. J. Papadopoulos
    Journal of Astrophysics and Astronomy, 2003, 24 : 85 - 97
  • [46] From Hamiltonian perturbation theory to symplectic integrators and back
    Universita di Padova, Padova, Italy
    Appl Numer Math, 1 (73-87):
  • [47] From Hamiltonian perturbation theory to symplectic integrators and back
    Benettin, G
    Fasso, F
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (01) : 73 - 87
  • [48] Symplectic integrators for spin systems
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [49] On the application of improved symplectic integrators in Hamiltonian Monte Carlo
    Mannseth, Janne
    Kleppe, Tore S.
    Skaug, Hans J.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (02) : 500 - 509
  • [50] Preservation of stability properties near fixed points of linear Hamiltonian systems by symplectic integrators
    Ding, Xiaohua
    Liu, Hongyu
    Shang, Zaijiu
    Sun, Geng
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) : 6105 - 6114