Adaptive Marginalized Semantic Hashing for Unpaired Cross-Modal Retrieval

被引:18
|
作者
Luo, Kaiyi [1 ]
Zhang, Chao [1 ]
Li, Huaxiong [1 ]
Jia, Xiuyi [2 ]
Chen, Chunlin [1 ]
机构
[1] Nanjing Univ, Dept Control Sci & Intelligence Engn, Nanjing 210093, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210014, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal retrieval; unpaired hashing; adaptive margins; CODES;
D O I
10.1109/TMM.2023.3245400
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, Cross-Modal Hashing (CMH) has attracted much attention due to its fast query speed and efficient storage. Previous studies have achieved promising results for Cross-Modal Retrieval (CMR) by discovering discriminative hash codes and modality-specific hash functions. Nonetheless, most existing CMR works are subjected to some restrictions: 1) It is assumed that data of different modalities are fully paired, which is impractical in real applications due to sample missing and false data alignment, and 2) binary regression targets including the label matrix and binary codes are too rigid to effectively learn semantic-preserving hash codes and hash functions. To address these problems, this paper proposes an Adaptive Marginalized Semantic Hashing (AMSH) method which not only enhances the discrimination of latent representations and hash codes by adaptive margins, but can also be used for both paired and unpaired CMR. As a two-step method, in the first step, AMSH generates semantic-aware modality-specific latent representations with adaptively marginalized labels, thereby enlarging the distances between different classes, and exploiting the labels to preserve the inter-modal and intra-modal semantic similarities into latent representations and hash codes. In the second step, adaptive margin matrices are embedded into the hash codes, and enlarge the gaps between positive and negative bits, which improves the discrimination and robustness of hash functions. On this basis, AMSH generates similarity-preserving hash codes and robust hash functions without the strict one-to-one data correspondence requirement. Experiments are conducted on several benchmark datasets to demonstrate the superiority and flexibility of AMSH over some state-of-the-art CMR methods.
引用
收藏
页码:9082 / 9095
页数:14
相关论文
共 50 条
  • [1] Semantic consistency hashing for cross-modal retrieval
    Yao, Tao
    Kong, Xiangwei
    Fu, Haiyan
    Tian, Qi
    NEUROCOMPUTING, 2016, 193 : 250 - 259
  • [2] Triplet Fusion Network Hashing for Unpaired Cross-Modal Retrieval
    Hu, Zhikai
    Liu, Xin
    Wang, Xingzhi
    Cheung, Yiu-ming
    Wang, Nannan
    Chen, Yewang
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 141 - 149
  • [3] Generalized Semantic Preserving Hashing for Cross-Modal Retrieval
    Mandal, Devraj
    Chaudhury, Kunal N.
    Biswas, Soma
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 102 - 112
  • [4] Semantic-Guided Hashing for Cross-Modal Retrieval
    Chen, Zhikui
    Du, Jianing
    Zhong, Fangming
    Chen, Shi
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), 2019, : 182 - 190
  • [5] Semantic Disentanglement Adversarial Hashing for Cross-Modal Retrieval
    Meng, Min
    Sun, Jiaxuan
    Liu, Jigang
    Yu, Jun
    Wu, Jigang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1914 - 1926
  • [6] Joint Semantic Preserving Sparse Hashing for Cross-Modal Retrieval
    Hu, Zhikai
    Cheung, Yiu-Ming
    Li, Mengke
    Lan, Weichao
    Zhang, Donglin
    Liu, Qiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2989 - 3002
  • [7] Deep semantic hashing with dual attention for cross-modal retrieval
    Jiagao Wu
    Weiwei Weng
    Junxia Fu
    Linfeng Liu
    Bin Hu
    Neural Computing and Applications, 2022, 34 : 5397 - 5416
  • [8] Semantic Boosting Cross-Modal Hashing for efficient multimedia retrieval
    Wang, Ke
    Tang, Jun
    Wang, Nian
    Shao, Ling
    INFORMATION SCIENCES, 2016, 330 : 199 - 210
  • [9] Semantic preserving asymmetric discrete hashing for cross-modal retrieval
    Fan Yang
    Qiao-xi Zhang
    Xiao-jian Ding
    Fu-min Ma
    Jie Cao
    De-yu Tong
    Applied Intelligence, 2023, 53 : 15352 - 15371
  • [10] Deep semantic similarity adversarial hashing for cross-modal retrieval
    Qiang, Haopeng
    Wan, Yuan
    Xiang, Lun
    Meng, Xiaojing
    NEUROCOMPUTING, 2020, 400 : 24 - 33