On the well-posedness in Besov-Herz spaces for the inhomogeneous incompressible Euler equations

被引:0
|
作者
Ferreira, Lucas C. F. [1 ]
Machado, Daniel F. [1 ]
机构
[1] Univ Estadual Campinas, Dept Math, IMECC, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Inhomogeneous Euler equations; Well-posedness; Blow-up criterion; Transport equations; Commutator estimates; Besov-Herz spaces; BLOW-UP CRITERION; LOCAL EXISTENCE; LIPSCHITZ-SPACES; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the inhomogeneous incompressible Euler equations in the whole space Rn with n >= 3. We obtain well-posedness and blow-up results in a new framework for inhomogeneous fluids, more precisely Besov-Herz spaces that are Besov spaces based on Herz ones, covering particularly critical cases of the regularity. Comparing with previous works on Besov spaces, our results provide a larger initial data class for a well-defined flow. For that, we need to obtain suitable linear estimates for some conservation-law models in our setting such as transport equations and the linearized inhomogeneous Euler system.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [41] Local well-posedness for the homogeneous Euler equations
    Zhong, Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3829 - 3848
  • [42] On the global well-posedness for the axisymmetric Euler equations
    Abidi, Hammadi
    Hmidi, Taoufik
    Keraani, Sahbi
    MATHEMATISCHE ANNALEN, 2010, 347 (01) : 15 - 41
  • [43] On the global well-posedness for the axisymmetric Euler equations
    Hammadi Abidi
    Taoufik Hmidi
    Sahbi Keraani
    Mathematische Annalen, 2010, 347 : 15 - 41
  • [44] Decay and Global Well-Posedness of the Free-Boundary Incompressible Euler Equations with Damping
    Lian, Jiali
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [45] Global well-posedness of helicoidal Euler equations
    Abidi, Hammadi
    Sakrani, Saoussen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (08) : 2177 - 2214
  • [46] Well-Posedness of Mild Solutions for the Fractional Navier-Stokes Equations in Besov Spaces
    Xi, Xuan-Xuan
    Zhou, Yong
    Hou, Mimi
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [47] Well-posedness of quasi-geostrophic equations with data in Besov-Q spaces
    Li, Pengtao
    Yang, Qixiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 243 - 258
  • [48] Composition estimates and well-posedness for Hardy-Henon parabolic equations in Besov spaces
    Chikami, Noboru
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2019, 5 (02) : 215 - 250
  • [49] Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces
    Wu, Xing
    Yu, Yanghai
    Tang, Yanbin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [50] Composition estimates and well-posedness for Hardy–Hénon parabolic equations in Besov spaces
    Noboru Chikami
    Journal of Elliptic and Parabolic Equations, 2019, 5 : 215 - 250