AN INTER-OBSERVER CONSISTENT DEEP ADVERSARIAL TRAINING FOR VISUAL SCANPATH PREDICTION

被引:0
|
作者
Kerkouri, Mohamed Amine [1 ]
Tliba, Marouane [1 ]
Chetouani, Aladine [1 ]
Bruno, Alessandro [2 ]
机构
[1] Univ Orleans, Lab PRISME, Orleans, France
[2] IULM Univ, Milan, Italy
关键词
Visual Attention; scanpath prediction; adversarial training; inter-observer consistency;
D O I
10.1109/ICIP49359.2023.10222686
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The visual scanpath represents the fundamental concept upon which visual attention research is based. As a result, the ability to predict them has emerged as a crucial task in recent years. It is represented as a sequence of points through which the human gaze moves while exploring a scene. In this paper, we propose an inter-observer consistent adversarial training approach for scanpath prediction through a lightweight deep neural network. The proposed method employs a discriminative neural network as a dynamic loss that better models the natural stochastic phenomenon while maintaining consistency between the distributions related to the subjective nature of scanpaths traversed by different observers. The competitiveness of our approach against state-of-the-art methods is shown through a testing phase.
引用
收藏
页码:2595 / 2599
页数:5
相关论文
共 50 条
  • [21] Pediatric thyroid nodules: ultrasonographic characteristics and inter-observer variability in prediction of malignancy
    Koltin, Dror
    O'Gorman, Clodagh S.
    Murphy, Amanda
    Ngan, Bo
    Daneman, Alan
    Navarro, Oscar M.
    Garcia, Cristian
    Atenafu, Eshetu G.
    Wasserman, Jonathan D.
    Hamilton, Jill
    Rachmiel, Marianna
    JOURNAL OF PEDIATRIC ENDOCRINOLOGY & METABOLISM, 2016, 29 (07): : 789 - 794
  • [22] Inter-observer agreement of tests used for prediction of difficult laryngoscopy/tracheal intubation
    Rosenstock, C
    Gillesberg, I
    Gätke, MR
    Levin, D
    Kristensen, MS
    Rasmussen, LS
    ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2005, 49 (08) : 1057 - 1062
  • [23] Reducing inter-observer and intra-observer variability of embryo quality assessment using deep learning
    Sais, E.
    Mayeur, A.
    Binois, O.
    Hesters, L.
    Puy, V.
    Fossard, C.
    Filali, M.
    Vandame, J.
    Poulain, M.
    Frydman, N.
    HUMAN REPRODUCTION, 2022, 37
  • [24] Visual assessment of breast density: intra-and inter-observer variability in visual analogue scale scores
    Ang, Teri
    Maxwell, Anthony
    Lim, Yit Y.
    Harkness, Elaine
    Emsley, Richard
    Astley, Susan
    Gadde, Soujanya
    BREAST CANCER RESEARCH, 2016, 18
  • [25] INTER-OBSERVER VARIATION IN REFRACTION AND VISUAL-ACUITY MEASUREMENT USING A STANDARDIZED PROTOCOL
    KLEIN, R
    KLEIN, BEK
    MOSS, SE
    DEMETS, D
    OPHTHALMOLOGY, 1983, 90 (11) : 1357 - 1359
  • [26] The effect of a training webinar on decreasing inter-observer variability in making a radiologic diagnosis of bronchiectasis
    O’Neil Green
    Alexander Knee
    Angelica Patino
    Lucy Modahl
    Sybille Liautaud
    BMC Medical Imaging, 22
  • [27] Inter-observer variations on interpretation of capsule endoscopy and its impact on training requirements for competence
    John, Sneha
    Kejariwal, Deepak
    Jamieson, Crawford P.
    GASTROINTESTINAL ENDOSCOPY, 2008, 67 (05) : AB301 - AB301
  • [28] Inter-Observer Reproducibility in PD-L1 Immunohistochemistry Interpretation Improves with Training
    Sauter, Jennifer L.
    Graham, Rondell
    Torbenson, Michael S.
    Flotte, Thomas J.
    Maleszewski, Joseph J.
    Roden, Anja C.
    Lehrke, Heidi
    Keeney, Michael G.
    Jenkins, Sarah
    Kerr, Sarah E.
    MODERN PATHOLOGY, 2017, 30 : 518A - 518A
  • [29] The effect of a training webinar on decreasing inter-observer variability in making a radiologic diagnosis of bronchiectasis
    Green, O'Neil
    Knee, Alexander
    Patino, Angelica
    Modahl, Lucy
    Liautaud, Sybille
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [30] Inter-Observer Reproducibility in PD-L1 Immunohistochemistry Interpretation Improves with Training
    Sauter, Jennifer L.
    Graham, Rondell
    Torbenson, Michael S.
    Flotte, Thomas J.
    Maleszewski, Joseph J.
    Roden, Anja C.
    Lehrke, Heidi
    Keeney, Michael G.
    Jenkins, Sarah
    Kerr, Sarah E.
    LABORATORY INVESTIGATION, 2017, 97 : 518A - 518A