Performance of Automated Machine Learning for Predicting Diabetic Retinopathy Progression from Ultrawide Field Retinal Images

被引:0
|
作者
Silva, Paolo S. [1 ,2 ]
Jacoba, Cris Martin P. [1 ,2 ]
Zhang, Dean [1 ]
Fickweiler, Ward [1 ,2 ]
Lewis, Drew [3 ]
Leitmeyer, Jeremy [3 ]
Salongcay, Recivall [4 ]
Curran, Katie [4 ]
Doan, Duy [1 ]
Ashraf, Mohamed [1 ,2 ]
Cavallerano, Jerry [1 ,2 ]
Sun, Jennifer K. [1 ,2 ]
Peto, Tunde [4 ]
Aiello, Lloyd P. [1 ,2 ]
机构
[1] Beetham Eye Inst, Joslin Diabet Ctr, Boston, MA USA
[2] Harvard Med Sch, Ophthalmol, Boston, MA USA
[3] Estenda Solutions Inc, Conshohocken, PA USA
[4] Queens Univ, Belfast Ctr Publ Hlth, Belfast, Antrim, North Ireland
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
1873
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Automated Diagnosis of Diabetic Retinopathy Using Deep Learning: On the Search of Segmented Retinal Blood Vessel Images for Better Performance
    Khan, Mohammad B.
    Ahmad, Mohiuddin
    Yaakob, Shamshul B.
    Shahrior, Rahat
    Rashid, Mohd A.
    Higa, Hiroki
    BIOENGINEERING-BASEL, 2023, 10 (04):
  • [32] A Deep Learning System for Predicting the Progression of Diabetic Retinopathy
    Wang, Victoria
    Lo, Men-Tzung
    Chen, Ta-ching
    Huang, Chu-Hsuan
    Huang, Adam
    Wang, Pa-Chun
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [33] Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy
    Lin, Gen-Min
    Chen, Mei-Juan
    Yeh, Chia-Hung
    Lin, Yu-Yang
    Kuo, Heng-Yu
    Lin, Min-Hui
    Chen, Ming-Chin
    Lin, Shinfeng D.
    Gao, Ying
    Ran, Anran
    Cheung, Carol Y.
    JOURNAL OF OPHTHALMOLOGY, 2018, 2018
  • [34] Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy
    Price, Liam D.
    Au, Stephanie
    Chong, N. Victor
    CLINICAL OPHTHALMOLOGY, 2015, 9 : 527 - 531
  • [35] Retinal perfusion pressure: A clinical parameter in predicting progression in diabetic retinopathy
    Patel, V
    Sailesh, S
    Panja, S
    Kohner, EM
    DIABETOLOGIA, 2000, 43 : A65 - A65
  • [36] Performance Analysis of Automated Detection of Diabetic Retinopathy Using Machine Learning and Deep Learning Techniques
    Varghese, Nimisha Raichel
    Gopan, Neethu Radha
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 156 - 164
  • [37] Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images
    Sopharak, Akara
    Uyyanonvara, Bunyarit
    Barman, Sarah
    MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2013, 7 (02) : 294 - 314
  • [38] Feature Extraction and Classification of Retinal Images for Automated Detection of Diabetic Retinopathy
    Harini, R.
    Sheela, N.
    2016 SECOND INTERNATIONAL CONFERENCE ON COGNITIVE COMPUTING AND INFORMATION PROCESSING (CCIP), 2016,
  • [39] Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy
    Akram, M. Usman
    Tariq, Anam
    Anjum, M. Almas
    Javed, M. Younus
    APPLIED OPTICS, 2012, 51 (20) : 4858 - 4866
  • [40] A deep learning system for predicting time to progression of diabetic retinopathy
    Ling Dai
    Bin Sheng
    Tingli Chen
    Qiang Wu
    Ruhan Liu
    Chun Cai
    Liang Wu
    Dawei Yang
    Haslina Hamzah
    Yuexing Liu
    Xiangning Wang
    Zhouyu Guan
    Shujie Yu
    Tingyao Li
    Ziqi Tang
    Anran Ran
    Haoxuan Che
    Hao Chen
    Yingfeng Zheng
    Jia Shu
    Shan Huang
    Chan Wu
    Shiqun Lin
    Dan Liu
    Jiajia Li
    Zheyuan Wang
    Ziyao Meng
    Jie Shen
    Xuhong Hou
    Chenxin Deng
    Lei Ruan
    Feng Lu
    Miaoli Chee
    Ten Cheer Quek
    Ramyaa Srinivasan
    Rajiv Raman
    Xiaodong Sun
    Ya Xing Wang
    Jiarui Wu
    Hai Jin
    Rongping Dai
    Dinggang Shen
    Xiaokang Yang
    Minyi Guo
    Cuntai Zhang
    Carol Y. Cheung
    Gavin Siew Wei Tan
    Yih-Chung Tham
    Ching-Yu Cheng
    Huating Li
    Nature Medicine, 2024, 30 : 584 - 594