A Single-Fidelity Surrogate Modeling Method Based on Nonlinearity Integrated Multi-Fidelity Surrogate

被引:0
|
作者
Li, Kunpeng [1 ]
He, Xiwang [1 ]
Lv, Liye [2 ]
Zhu, Jiaxiang [3 ]
Hao, Guangbo [3 ]
Li, Haiyang [4 ]
Song, Xueguan [1 ]
机构
[1] Dalian Univ Technol, Sch Mech Engn, 2,Linggong Rd, Dalian 116024, Peoples R China
[2] Zhejiang Sci Tech Univ, Sch Mech Engn, 928,2 St,Xiasha Higher Educ Pk, Hangzhou 310000, Peoples R China
[3] Univ Coll Cork, Sch Engn & Architecture Elect & Elect Engn, Cork T12 K8AF, Ireland
[4] Dalian Univ Technol, Sch Automot Engn, 2,Linggong Rd, Dalian 116024, Peoples R China
关键词
surrogate model; nonlinearity integrated; multi-fidelity surrogate; correlation; metamodeling; OPTIMIZATION; DESIGN;
D O I
10.1115/1.4062665
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Surrogate model provides a promising way to reasonably approximate complex underlying relationships between system parameters. However, the expensive modeling cost, especially in large problem sizes, hinders its applications in practical problems. To overcome this issue, with the advantages of the multi-fidelity surrogate (MFS) model, this paper proposes a single-fidelity surrogate model with a hierarchical structure, named nonlinearity integrated correlation mapping surrogate (NI-CMS) model. The NI-CMS model first establishes the low-fidelity model to capture the underlying landscape of the true function, and then, based on the idea of MFS model, the established low-fidelity model is corrected by minimizing the mean square error to ensure prediction accuracy. Especially, a novel MFS model (named NI-MFS), is constructed to enhance the stability of the proposed NI-CMS model. More specifically, a nonlinear scaling term, which assumes the linear combination of the projected low-fidelity predictions in a high-dimensional space can reach the high-fidelity level, is introduced to assist the traditional scaling term. The performances of the proposed model are evaluated through a series of numerical test functions. In addition, a surrogate-based digital twin of an XY compliant parallel manipulator is used to validate the practical performance of the proposed model. The results show that compared with the existing models, the NI-CMS model provides a higher performance under the condition of a small sample set, illustrating the promising potential of this surrogate modeling technique.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-fidelity Surrogate Modelling of Wall Mounted Cubes
    Mole, Andrew
    Skillen, Alex
    Revell, Alistair
    FLOW TURBULENCE AND COMBUSTION, 2023, 110 (04) : 835 - 853
  • [32] Multi-fidelity Surrogate Modelling of Wall Mounted Cubes
    Andrew Mole
    Alex Skillen
    Alistair Revell
    Flow, Turbulence and Combustion, 2023, 110 : 835 - 853
  • [33] A NOVEL MULTI-FIDELITY SURROGATE FOR TURBOMACHINERY DESIGN OPTIMIZATION
    Wang, Qineng
    Song, Liming
    Guo, Zhendong
    Li, Jun
    Feng, Zhenping
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 13D, 2023,
  • [34] Multi-fidelity surrogate models for flutter database generation
    Rumpfkeil, Markus P.
    Beran, Philip
    COMPUTERS & FLUIDS, 2020, 197
  • [35] Multi-fidelity reduced-order surrogate modelling
    Conti, Paolo
    Guo, Mengwu
    Manzoni, Andrea
    Frangi, Attilio
    Brunton, Steven L.
    Kutz, J. Nathan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2283):
  • [36] RESEARCH ON A MULTI-FIDELITY SURROGATE MODEL BASED MODEL UPDATING STRATEGY
    Wang, Ping
    Wang, Qingmiao
    Yang, Xin
    Zhan, Zhenfei
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 13, 2019,
  • [37] Multi-Fidelity Surrogate-Based Optimization for Electromagnetic Simulation Acceleration
    Wang, Yi
    Franzon, Paul D.
    Smart, David
    Swahn, Brian
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2020, 25 (05)
  • [38] Multi-fidelity surrogate reduced-order modeling of steady flow estimation
    Wang, Xu
    Kou, Jiaqing
    Zhang, Weiwei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (12) : 1826 - 1844
  • [39] HIERARCHICAL GAUSSIAN PROCESS SURROGATE MODELING FRAMEWORK FOR HETEROGENEOUS MULTI-FIDELITY DATASET
    Lee, Juyoung
    Lee, Mingyu
    Lee, Bong Jae
    Lee, Ikjin
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 2, 2023,
  • [40] Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems
    Jakeman, John D.
    Friedman, Sam
    Eldred, Michael S.
    Tamellini, Lorenzo
    Gorodetsky, Alex A.
    Allaire, Doug
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (12) : 2760 - 2790