Single-Cell RNA-Seq Debiased Clustering via Batch Effect Disentanglement

被引:3
|
作者
Li, Yunfan [1 ]
Lin, Yijie [1 ]
Hu, Peng [1 ]
Peng, Dezhong [1 ]
Luo, Han [2 ]
Peng, Xi [1 ]
机构
[1] Sichuan Univ, Sch Comp Sci, Chengdu 610000, Peoples R China
[2] Sichuan Univ, West China Hosp, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
Biological information theory; Clustering methods; Data models; Feature extraction; Deep learning; Data mining; Task analysis; Batch integration; clustering; single-cell RNA analysis; EXPRESSION;
D O I
10.1109/TNNLS.2023.3260003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A variety of single-cell RNA-seq (scRNA-seq) clustering methods has achieved great success in discovering cellular phenotypes. However, it remains challenging when the data confounds with batch effects brought by different experimental conditions or technologies. Namely, the data partitions would be biased toward these nonbiological factors. Meanwhile, the batch differences are not always much smaller than true biological variations, hindering the cooperation of batch integration and clustering methods. To overcome this challenge, we propose single-cell RNA-seq debiased clustering (SCDC), an end-to-end clustering method that is debiased toward batch effects by disentangling the biological and nonbiological information from scRNA-seq data during data partitioning. In six analyses, SCDC qualitatively and quantitatively outperforms both the state-of-the-art clustering and batch integration methods in handling scRNA-seq data with batch effects. Furthermore, SCDC clusters data with a linearly increasing running time with respect to cell numbers and a fixed graphics processing unit (GPU) memory consumption, making it scalable to large datasets. The code will be released on Github.
引用
收藏
页码:11371 / 11381
页数:11
相关论文
共 50 条
  • [31] scGAC: a graph attentional architecture for clustering single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    BIOINFORMATICS, 2022, 38 (08) : 2187 - 2193
  • [32] Clustering and visualization of single-cell RNA-seq data using path metrics
    Manousidaki, Andriana
    Little, Anna
    Xie, Yuying
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [33] Single-cell RNA-seq data clustering: A survey with performance comparison study
    Li, Ruiyi
    Guan, Jihong
    Zhou, Shuigeng
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (04)
  • [34] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [35] scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks
    Liu, Tianxiang
    Jia, Cangzhi
    Bi, Yue
    Guo, Xudong
    Zou, Quan
    Li, Fuyi
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [36] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husić, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    Computational and Structural Biotechnology Journal, 2022, 20 : 6375 - 6387
  • [37] SC3: consensus clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Kirschner, Kristina
    Schaub, Michael T.
    Andrews, Tallulah
    Yiu, Andrew
    Chandra, Tamir
    Natarajan, Kedar N.
    Reik, Wolf
    Barahona, Mauricio
    Green, Anthony R.
    Hemberg, Martin
    NATURE METHODS, 2017, 14 (05) : 483 - +
  • [38] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husic, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6375 - 6387
  • [39] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [40] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029