L(2; 1; 1)-labeling of interval graphs

被引:1
|
作者
Amanathulla, Sk. [1 ]
Bera, Biswajit [2 ]
Pal, Madhumangal [3 ]
机构
[1] Raghunathpur Coll, Dept Math, Purulia 723121, West Bengal, India
[2] Kabi Jagadram Roy Govt Gen Degree Coll, Dept Math, Bankura 722143, West Bengal, India
[3] Vidyasagar Univ, Dept Appl Math Oceanol & Comp Programming, Midnapore 721102, West Bengal, India
来源
关键词
L211-labeling; interval graph; efficient algorithm; frequency assignment; CODE ASSIGNMENT; SQUARE;
D O I
10.1142/S2661335222500034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
L(r; s; t)-labeling problem (Lrst-LP) is an important topic in discrete mathematics due to its various applications, like in frequency assignment in mobile communication systems, signal processing, circuit design, etc. L211 -LP is a special case of Lrst-LP. An L211-labeling (L211L) of a graph G = (V ; E) is a mapping F : V-> {0; 1; 2; ...} such that IF(xi) -F(eta)I >= 2 if and only if d(xi; eta) = 1, IF(xi) -z(eta)I > 1 if d(xi; eta) = 2 or 3, where d(xi; eta) is the distance between the nodes xi and eta. In this work, we have determined the upper bound of L211L for interval graph (IG) and obtained a tighter upper bound which is 4.6, -2. Also, we proposed an efficient algorithm to label any IG by L211L and also computed the time complexity of the proposed algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A note on (s, t)-relaxed L(2, 1)-labeling of graphs
    Taiyin Zhao
    Guangmin Hu
    Journal of Combinatorial Optimization, 2017, 34 : 378 - 382
  • [42] L(3,2,1)-Labeling problems on trapezoid graphs
    Amanathulla, S. K.
    Pal, Madhumangal
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [43] On the complexity of exact algorithm for L(2,1)-labeling of graphs
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    INFORMATION PROCESSING LETTERS, 2011, 111 (14) : 697 - 701
  • [44] L(3,2,1)-labeling of certain planar graphs
    Calamoneri, Tiziana
    THEORETICAL COMPUTER SCIENCE, 2024, 1022
  • [45] L(2,1)-labeling of flower snark and related graphs
    Tong Chunling
    Lin Xiaohui
    Yang Yuansheng
    Hou Zhengwei
    ARS COMBINATORIA, 2013, 110 : 505 - 512
  • [46] A RESTRICTED L(2,1)-LABELLING PROBLEM ON INTERVAL GRAPHS
    Patra, N.
    Amanathulla, S. K.
    Pal, M.
    Mondal, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (02): : 635 - 648
  • [47] Approximate L(δ1, δ2,..., δt)-coloring of trees and interval graphs
    Bertossi, Alan A.
    Pinotti, Cristina M.
    NETWORKS, 2007, 49 (03) : 204 - 216
  • [48] L(p, q)-LABELING OF GRAPHS WITH INTERVAL REPRESENTATIONS
    Yetim, Mehmet Akif
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 1215 - 1235
  • [49] L(h, 1)-labeling subclasses of planar graphs
    Calamoneri, T
    Petreschi, R
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2004, 64 (03) : 414 - 426
  • [50] L(3,1)-labeling of circulant graphs
    Bhoumik, Soumya
    Mitra, Sarbari
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)