A class of elliptic quasi-variational-hemivariational inequalities with applications

被引:6
|
作者
Migorski, Stanislaw [1 ,2 ]
Yao, Jen-Chih [3 ]
Zeng, Shengda [4 ,5 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[4] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Guangxi, Peoples R China
[5] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Variational-hemivariational inequality; Variational inequality; Clarke subgradient; Mosco convergence; Fixed point; CONVEX-SETS;
D O I
10.1016/j.cam.2022.114871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a class of quasi-variational-hemivariational inequalities in reflexive Banach spaces. The inequalities contain a convex potential, a locally Lipschitz superpotential, and a solution-dependent set of constraints. Solution existence and compactness of the solution set to the inequality problem are established based on the Kakutani-Ky Fan-Glicksberg fixed point theorem. Two examples of the interior and boundary semipermeability models illustrate the applicability of our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Optimal Control of Elliptic Variational–Hemivariational Inequalities
    Zijia Peng
    Karl Kunisch
    Journal of Optimization Theory and Applications, 2018, 178 : 1 - 25
  • [22] NONLOCAL ELLIPTIC VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Migorski, Stanislaw
    Van Thien Nguyen
    Zeng, Shengda
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2020, 32 (01) : 51 - 58
  • [23] A class of quasilinear elliptic hemivariational inequalities
    Liu Zhenhai
    Acta Mathematicae Applicatae Sinica, 2001, 17 (2) : 279 - 285
  • [24] A class of generalized mixed variational-hemivariational inequalities II: Applications
    Migorski, Stanislaw
    Bai, Yunru
    Zeng, Shengda
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 633 - 650
  • [25] A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO FRICTIONAL CONTACT PROBLEMS
    Han, Weimin
    Migorski, Stanislaw
    Sofonea, Mircea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) : 3891 - 3912
  • [26] Optimal Control of Elliptic Variational-Hemivariational Inequalities
    Peng, Zijia
    Kunisch, Karl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 1 - 25
  • [27] On boundary variational-hemivariational inequalities of elliptic type
    Liu, Zhenhai
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 419 - 434
  • [28] Convergence Results for Elliptic Variational-Hemivariational Inequalities
    Cai, Dong-ling
    Sofonea, Mircea
    Xiao, Yi-bin
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 2 - 23
  • [29] A Penalty Method for Elliptic Variational-Hemivariational Inequalities
    Sofonea, Mircea
    Tarzia, Domingo A.
    AXIOMS, 2024, 13 (10)
  • [30] Generalized Penalty Method for Elliptic Variational–Hemivariational Inequalities
    Yi-bin Xiao
    Mircea Sofonea
    Applied Mathematics & Optimization, 2021, 83 : 789 - 812