Dynamic Scene Path Planning of UAVs Based on Deep Reinforcement Learning

被引:9
|
作者
Tang, Jin [1 ,2 ]
Liang, Yangang [1 ,2 ]
Li, Kebo [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Peoples R China
[2] Hunan Key Lab Intelligent Planning & Simulat Aeros, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
path planning; UAV; deep reinforcement learning; heuristic policy; prioritized experience replay; ALGORITHM; GO;
D O I
10.3390/drones8020060
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Traditional unmanned aerial vehicle path planning methods focus on addressing planning issues in static scenes, struggle to balance optimality and real-time performance, and are prone to local optima. In this paper, we propose an improved deep reinforcement learning approach for UAV path planning in dynamic scenarios. Firstly, we establish a task scenario including an obstacle assessment model and model the UAV's path planning problem using the Markov Decision Process. We translate the MDP model into the framework of reinforcement learning and design the state space, action space, and reward function while incorporating heuristic rules into the action exploration policy. Secondly, we utilize the Q function approximation of an enhanced D3QN with a prioritized experience replay mechanism and design the algorithm's network structure based on the TensorFlow framework. Through extensive training, we obtain reinforcement learning path planning policies for both static and dynamic scenes and innovatively employ a visualized action field to analyze their planning effectiveness. Simulations demonstrate that the proposed algorithm can accomplish UAV dynamic scene path planning tasks and outperforms classical methods such as A*, RRT, and DQN in terms of planning effectiveness.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A decentralized path planning model based on deep reinforcement learning
    Guo, Dong
    Ji, Shouwen
    Yao, Yanke
    Chen, Cheng
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 117
  • [22] Deep reinforcement learning-based reactive trajectory planning method for UAVs
    Cao, Lijia
    Wang, Lin
    Liu, Yang
    Xu, Weihong
    Geng, Chuang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2024, 238 (10) : 1018 - 1037
  • [23] Robot path planning in dynamic environment based on reinforcement learning
    Zhuang, Xiao-Dong
    Meng, Qing-Chun
    Wei, Tian-Bin
    Wang, Xu-Zhu
    Tan, Rui
    Li, Xiao-Jing
    Journal of Harbin Institute of Technology (New Series), 2001, 8 (03) : 253 - 255
  • [24] Robot path planning in dynamic environment based on reinforcement learning
    庄晓东
    孟庆春
    魏天滨
    王旭柱
    谭锐
    李筱菁
    Journal of Harbin Institute of Technology, 2001, (03) : 253 - 255
  • [25] Deep Reinforcement Learning-Based Path Planning with Dynamic Collision Probability for Mobile Robots
    Tariq, Muhammad Taha
    Wang, Congqing
    Hussain, Yasir
    2024 WRC SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION, WRC SARA, 2024, : 9 - 14
  • [26] Research on Dynamic Path Planning of Wheeled Robot Based on Deep Reinforcement Learning on the Slope Ground
    Wang, Peng
    Li, Xiaoqiang
    Song, Chunxiao
    Zhai, Shipeng
    JOURNAL OF ROBOTICS, 2020, 2020
  • [27] Deep reinforcement learning-based local path planning in dynamic environments for mobile robot☆
    Tao, Bodong
    Kim, Jae-Hoon
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (10)
  • [28] Unmanned Aerial Vehicle Path Planning in Complex Dynamic Environments Based on Deep Reinforcement Learning
    Liu, Jiandong
    Luo, Wei
    Zhang, Guoqing
    Li, Ruihao
    MACHINES, 2025, 13 (02)
  • [29] Path Planning of Mobile Robot in Dynamic Obstacle Avoidance Environment Based on Deep Reinforcement Learning
    Zhang, Qingfeng
    Ma, Wenpeng
    Zheng, Qingchun
    Zhai, Xiaofan
    Zhang, Wenqian
    Zhang, Tianchang
    Wang, Shuo
    IEEE ACCESS, 2024, 12 : 189136 - 189152
  • [30] Generalized Path Planning for Collaborative UAVs using Reinforcement and Imitation Learning
    Farley, Jack
    Chapnevis, Amirahmad
    Bulut, Eyuphan
    PROCEEDINGS OF THE 2023 INTERNATIONAL SYMPOSIUM ON THEORY, ALGORITHMIC FOUNDATIONS, AND PROTOCOL DESIGN FOR MOBILE NETWORKS AND MOBILE COMPUTING, MOBIHOC 2023, 2023, : 457 - 462