Improved deterministic algorithms for non-monotone submodular maximization

被引:4
|
作者
Sun, Xiaoming [1 ,2 ]
Zhang, Jialin [1 ,2 ]
Zhang, Shuo [1 ,2 ]
Zhang, Zhijie [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Fuzhou Univ, Ctr Appl Math Fujian Prov, Sch Math & Stat, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Submodular maximization; Deterministic algorithms; Derandomization; Twin greedy; Multiplicative updates; APPROXIMATIONS;
D O I
10.1016/j.tcs.2023.114293
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Submodular maximization is one of the central topics in combinatorial optimization. It has found numerous applications in the real world. In the past decades, a series of algorithms have been proposed for this problem. However, most of the state-of-the-art algorithms are randomized. There remain non-negligible gaps with respect to approximation ratios between deterministic and randomized algorithms in submodular maximization.In this paper, we propose deterministic algorithms with improved approximation ratios for non-monotone submodular maximization. Specifically, for the matroid constraint, we provide a deterministic 0.283 - ������(1) approximation algorithm, while the previous best deterministic algorithm only achieves a 1/4 approximation ratio. For the knapsack constraint, we provide a deterministic 1/4 approximation algorithm, while the previous best deterministic algorithm only achieves a 1/6 approximation ratio. For the linear packing constraints with large widths, we provide a deterministic 1/6 - ������ approximation algorithm. To the best of our knowledge, there is currently no deterministic approximation algorithm for the constraints.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions
    Nong, Qingqin
    Gong, Suning
    Fang, Qizhi
    Du, Dingzhu
    COMPLEXITY AND APPROXIMATION: IN MEMORY OF KER-I KO, 2020, 12000 : 172 - 186
  • [42] MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (04) : 1133 - 1153
  • [43] A fast double greedy algorithm for non-monotone DR-submodular function maximization
    Gu, Shuyang
    Shi, Ganquan
    Wu, Weili
    Lu, Changhong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)
  • [44] A Stochastic Non-monotone DR-Submodular Maximization Problem over a Convex Set
    Lian, Yuefang
    Xu, Dachuan
    Du, Donglei
    Zhou, Yang
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 1 - 11
  • [45] Revisiting non-monotone regularized submodular maximization: bi-criteria and PASS approximations
    Lu, Cheng
    JOURNAL OF GLOBAL OPTIMIZATION, 2025,
  • [46] Improved algorithms for non-submodular function maximization problem
    Liu, Zhicheng
    Jin, Jing
    Chang, Hong
    Du, Donglei
    Zhang, Xiaoyan
    THEORETICAL COMPUTER SCIENCE, 2022, 931 : 49 - 55
  • [47] Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
    Fadaei, Salman
    Fazli, MohammadAmin
    Safari, MohammadAli
    OPERATIONS RESEARCH LETTERS, 2011, 39 (06) : 447 - 451
  • [48] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Qi, Benjamin
    ALGORITHMICA, 2024, 86 (04) : 1080 - 1134
  • [49] Fast deterministic algorithms for non-submodular maximization with strong performance guarantees
    Lu, Cheng
    Yang, Wenguo
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (03) : 777 - 801
  • [50] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Benjamin Qi
    Algorithmica, 2024, 86 : 1080 - 1134