MENAS'S CONJECTURE REVISITED

被引:2
|
作者
Matet, Pierre [1 ]
机构
[1] Univ Caen, CNRS, Lab Math, BP 5186, F-14032 Caen, France
关键词
Menas's conjecture; ideal on P ( kappa )(lambda); weak saturation; COMBINATORIAL PROPERTY; IDEALS; SATURATION; SUBSETS;
D O I
10.1017/bsl.2023.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an article published in 1974, Menas conjectured that any stationary subset of P ( kappa )(lambda) can be split in lambda(kappa) many pairwise disjoint stationary subsets. Even though the conjecture was shown long ago by Baumgartner and Taylor to be consistently false, it is still haunting papers on P ( kappa )(lambda). In which situations does it hold? How much of it can be proven in ZFC? We start with an abridged history of the conjecture, then we formulate a new version of it, and finally we keep weakening this new assertion until, building on the work of Usuba, we hit something we can prove.
引用
收藏
页码:354 / 405
页数:52
相关论文
共 50 条
  • [1] CONSISTENCY OF MENAS CONJECTURE
    MATSUBARA, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1990, 42 (02) : 259 - 263
  • [2] MENAS CONJECTURE AND GENERIC ULTRAPOWERS
    MATSUBARA, Y
    ANNALS OF PURE AND APPLIED LOGIC, 1987, 36 (03) : 225 - 234
  • [3] Edrei’s Conjecture Revisited
    Jan P. Boroński
    Jiří Kupka
    Piotr Oprocha
    Annales Henri Poincaré, 2018, 19 : 267 - 281
  • [4] Pillai's conjecture revisited
    Bennett, MA
    JOURNAL OF NUMBER THEORY, 2003, 98 (02) : 228 - 235
  • [5] Keller's Conjecture Revisited
    Horak, Peter
    Kim, Dongryul
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (02): : 175 - 177
  • [6] Edrei's Conjecture Revisited
    Boronski, Jan P.
    Kupka, Jiri
    Oprocha, Piotr
    ANNALES HENRI POINCARE, 2018, 19 (01): : 267 - 281
  • [7] Krahn's proof of the Rayleigh conjecture revisited
    Daners, Daniel
    ARCHIV DER MATHEMATIK, 2011, 96 (02) : 187 - 199
  • [8] Geometric reductivity (Mumford's Conjecture) - revisited
    Seshadri, CS
    Commutative Algebra and Algebraic Geometry, 2005, 390 : 137 - 145
  • [9] Krahn’s proof of the Rayleigh conjecture revisited
    Daniel Daners
    Archiv der Mathematik, 2011, 96 : 187 - 199
  • [10] The level 1 case of Serre's conjecture revisited
    Victor Dieulefait, Luis
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2009, 20 (04) : 339 - 346