A novel high-performance electrospun of polyimide/lignin nanofibers with unique electrochemical properties and its application as lithium-ion batteries separators

被引:16
|
作者
Song, Changyong [1 ]
Gao, Chao [1 ]
Peng, Qinggang [1 ]
Gibril, Magdi E. [1 ]
Wang, Xiaohui [1 ]
Wang, Shoujuan [1 ]
Kong, Fangong [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Key Lab Pulp & Paper Sci & Technol Shandong Prov,M, Jinan 250353, Peoples R China
基金
美国国家科学基金会;
关键词
Lignin; Electrospinning; lithium-ion batteries separators (LIBs); MEMBRANE SEPARATORS; THERMAL-STABILITY; FIBROUS MEMBRANE; ELECTROLYTE; GEL;
D O I
10.1016/j.ijbiomac.2023.125668
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polypropylene is currently one of the most widely used separators in lithium batteries because of its low cost and chemical stability. However, it also has some intrinsic flaws that hamper the battery performance, such as poor wettability, low ionic conductivity, and some safety issues. This work introduces a novel electrospun nanofibrous consisting of polyimide (PI) blended with lignin (L) to serve as a new class of bio-based separators for lithium-ion batteries. The morphology and properties of the prepared membranes were studied in detail and compared with those of a commercial polypropylene separator. Interestingly, the polar groups in lignin promoted the affinity to the electrolytes and improved the liquid absorption properties of the PI-L membrane. Besides, the PI-L separator showed a higher ionic conductivity (1.78 x 10-3 S/cm) and Li+ transference number (0.787). Furthermore, the battery's cycle and rate performance improved due to adding of lignin. The capacity retention of the assembled LiFePO4 | PI-L | Li Battery was 95.1 % after 100 cycles at 1C current density, which was higher than that of the PP (90 %). Based on the results, PI-L, a bio-based battery separator, can potentially replace the current PP separators in lithium metal batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries
    Liu, Bin
    Hu, Xianluo
    Xu, Henghui
    Luo, Wei
    Sun, Yongming
    Huang, Yunhui
    SCIENTIFIC REPORTS, 2014, 4
  • [12] Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries
    Bin Liu
    Xianluo Hu
    Henghui Xu
    Wei Luo
    Yongming Sun
    Yunhui Huang
    Scientific Reports, 4
  • [13] Thermal Stability and Electrochemical Properties of Separators for Lithium-ion Batteries
    Yi, Guangyuan
    Xu, Caiyun
    Liu, Wan
    Qu, Deyu
    Wang, Hongbing
    Tang, Haolin
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (06): : 1231 - 1241
  • [14] Thermal Stability and Electrochemical Properties of Separators for Lithium-ion Batteries
    易光远
    XU Caiyun
    LIU Wan
    屈德宇
    WANG Hongbing
    唐浩林
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2023, 38 (06) : 1231 - 1241
  • [15] Novel electrospun SnO2@carbon nanofibers as high performance anodes for lithium-ion batteries
    Fu, Zhirong
    Li, Xuefeng
    Xu, Guirong
    CRYSTAL RESEARCH AND TECHNOLOGY, 2014, 49 (07) : 441 - 445
  • [16] Heat-Resistant Trilayer Separators for High-Performance Lithium-Ion Batteries
    Feng, Chao
    Wang, Xuchang
    Zeng, Guangfeng
    Chen, Dongjiang
    Lv, Weiqiang
    Han, Yupei
    Jian, Xian
    Dou, Shi Xue
    Xiong, Jie
    He, Weidong
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (01):
  • [17] High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin
    Gu, Qian-Qian
    Xue, Hong-Jin
    Li, Zhan-Wei
    Song, Jing-Chuan
    Sun, Zhao-Yan
    JOURNAL OF POWER SOURCES, 2021, 483
  • [18] A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators
    Aravindan, Vanchiappan
    Sundaramurthy, Jayaraman
    Kumar, Palaniswamy Suresh
    Shubha, Nageswaran
    Ling, Wong Chui
    Ramakrishna, Seeram
    Madhavi, Srinivasan
    NANOSCALE, 2013, 5 (21) : 10636 - 10645
  • [19] Multifunctional separators for high-performance lithium ion batteries
    Zhai, Pan
    Liu, Kexin
    Wang, Zhuyi
    Shi, Liyi
    Yuan, Shuai
    Journal of Power Sources, 2021, 499
  • [20] Multifunctional separators for high-performance lithium ion batteries
    Zhai, Pan
    Liu, Kexin
    Wang, Zhuyi
    Shi, Liyi
    Yuan, Shuai
    JOURNAL OF POWER SOURCES, 2021, 499