Multi-Source Collaborative Contrastive Learning for Decentralized Domain Adaptation

被引:13
|
作者
Wei, Yikang [1 ]
Yang, Liu [1 ]
Han, Yahong [1 ]
Hu, Qinghua [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin Key Lab Machine Learning, Tianjin 300350, Peoples R China
关键词
Adaptation models; Feature extraction; Data models; Collaboration; Data mining; Training; Bridges; Multi-source domain adaptation; data decentralization; contrastive learning; UNSUPERVISED DOMAIN;
D O I
10.1109/TCSVT.2022.3219893
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unsupervised multi-source domain adaptation aims to obtain a model working well on the unlabeled target domain by reducing the domain gap between the labeled source domains and the unlabeled target domain. Considering the data privacy and storage cost, data from multiple source domains and target domain are isolated and decentralized. This data decentralization scenario brings the difficulty of domain alignment for reducing the domain gap between the decentralized source domains and target domain, respectively. For conducting domain alignment under the data decentralization scenario, we propose Multi-source Collaborative Contrastive learning for decentralized Domain Adaptation (MCC-DA). The models from other domains are used as the bridge to reduce the domain gap. On the source domains and target domain, we penalize the inconsistency of data features extracted from the source domain models and target domain model by contrastive alignment. With the collaboration of source domain models and target domain model, the domain gap between decentralized source domains and target domain is reduced without accessing the data from other domains. The experiment results on multiple benchmarks indicate that our method can reduce the domain gap effectively and outperform the state-of-the-art methods significantly.
引用
收藏
页码:2202 / 2216
页数:15
相关论文
共 50 条
  • [41] Transformer Based Multi-Source Domain Adaptation
    Wright, Dustin
    Augenstein, Isabelle
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7963 - 7974
  • [42] Automatic online multi-source domain adaptation
    Renchunzi, Xie
    Pratama, Mahardhika
    INFORMATION SCIENCES, 2022, 582 : 480 - 494
  • [43] Multi-source domain adaptation for image classification
    Karimpour, Morvarid
    Noori Saray, Shiva
    Tahmoresnezhad, Jafar
    Pourmahmood Aghababa, Mohammad
    MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
  • [44] Moment Matching for Multi-Source Domain Adaptation
    Peng, Xingchao
    Bai, Qinxun
    Xia, Xide
    Huang, Zijun
    Saenko, Kate
    Wang, Bo
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1406 - 1415
  • [45] Multi-source domain adaptation for image classification
    Morvarid Karimpour
    Shiva Noori Saray
    Jafar Tahmoresnezhad
    Mohammad Pourmahmood Aghababa
    Machine Vision and Applications, 2020, 31
  • [46] Subspace Identification for Multi-Source Domain Adaptation
    Li, Zijian
    Cai, Ruichu
    Chen, Guangyi
    Sun, Boyang
    Hao, Zhifeng
    Zhang, Kun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [47] KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation
    Feng, Hao-zhe
    You, Zhaoyang
    Chen, Minghao
    Zhang, Tianye
    Zhu, Minfeng
    Wu, Fei
    Wu, Chao
    Chen, Wei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [48] Adaptive multi-source domain collaborative fine-tuning for transfer learning
    Feng, Le
    Yang, Yuan
    Tan, Mian
    Zeng, Taotao
    Tang, Huachun
    Li, Zhiling
    Niu, Zhizhong
    Feng, Fujian
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [49] Multi-Source Domain Adaptation via Latent Domain Reconstruction
    Zhou, Jun
    Fu, Chilin
    Zhang, Xiaolu
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 523 - 527
  • [50] Unsupervised Multi-source Domain Adaptation Driven by Deep Adversarial Ensemble Learning
    Rakshit, Sayan
    Banerjee, Biplab
    Roig, Gemma
    Chaudhuri, Subhasis
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 485 - 498