Detection of COVID-19 from chest X-ray images: Boosting the performance with convolutional neural network and transfer learning

被引:15
|
作者
Asif, Sohaib [1 ,2 ,3 ]
Yi Wenhui [1 ,2 ]
Amjad, Kamran [1 ,2 ]
Jin, Hou [4 ]
Tao, Yi [5 ]
Si Jinhai [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Key Lab Informat Photon Technol Shaanxi Prov, Sch Elect Sci & Engn,Minist Educ, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Sch Elect Sci & Engn, Key Lab Phys Elect & Devices,Minist Educ, Xian 710049, Shaanxi, Peoples R China
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
[4] Xian Med Univ, Sch Basic Med Sci, Xian, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Comp Sci & Engn, Xian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
chest X-rays; COVID-19; detection; deep CNN; medical image analysis; transfer learning; VGG16; DEEP; CORONAVIRUS;
D O I
10.1111/exsy.13099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of F1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Detection of COVID-19 from X-Ray Images Using Transfer Learning Neural Networks
    Majeed, Sayf A.
    Darghaoth, Ahmed M. H.
    Hamed, Nama M. Z.
    Yahya, Yahya Ahmed
    Raed, Sara
    Dawood, Younis S.
    PROCEEDING OF 2021 2ND INFORMATION TECHNOLOGY TO ENHANCE E-LEARNING AND OTHER APPLICATION (IT-ELA 2021), 2021, : 58 - 63
  • [32] COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
    Linda Wang
    Zhong Qiu Lin
    Alexander Wong
    Scientific Reports, 10
  • [33] COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
    Wang, Linda
    Lin, Zhong Qiu
    Wong, Alexander
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [34] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [35] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Abbas, Asmaa
    Abdelsamea, Mohammed M.
    Gaber, Mohamed Medhat
    APPLIED INTELLIGENCE, 2021, 51 (02) : 854 - 864
  • [36] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Asmaa Abbas
    Mohammed M. Abdelsamea
    Mohamed Medhat Gaber
    Applied Intelligence, 2021, 51 : 854 - 864
  • [37] A Hybrid Convolutional Neural Network Model for Diagnosis of COVID-19 Using Chest X-ray Images
    Kaur, Prabhjot
    Harnal, Shilpi
    Tiwari, Rajeev
    Alharithi, Fahd S.
    Almulihi, Ahmed H.
    Noya, Irene Delgado
    Goyal, Nitin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (22)
  • [38] Ensemble learning-based COVID-19 detection by feature boosting in chest X-ray images
    Upadhyay, Kamini
    Agrawal, Monika
    Deepak, Desh
    IET IMAGE PROCESSING, 2020, 14 (16) : 4059 - 4066