Multimodal Bi-direction Guided Attention Networks for Visual Question Answering

被引:0
|
作者
Cai, Linqin [1 ]
Xu, Nuoying [1 ]
Tian, Hang [1 ]
Chen, Kejia [2 ]
Fan, Haodu [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Res Ctr Artificial Intelligence & Smart Educ, Chongqing 400065, Peoples R China
[2] Chengdu Huawei Technol Co Ltd, Chengdu 500643, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual question answering; Attention mechanism; Position attention; Deep learning; FUSION; KNOWLEDGE;
D O I
10.1007/s11063-023-11403-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current visual question answering (VQA) has become a research hotspot in the computer vision and natural language processing field. A core solution of VQA is how to fuse multi-modal features from images and questions. This paper proposes a Multimodal Bi-direction Guided Attention Network (MBGAN) for VQA by combining visual relationships and attention to achieve more refined feature fusion. Specifically, the self-attention is used to extract image features and text features, the guided-attention is applied to obtain the correlation between each image area and the related question. To obtain the relative position relationship of different objects, position attention is further introduced to realize relationship correlation modeling and enhance the matching ability of multi-modal features. Given an image and a natural language question, the proposed MBGAN learns visual relation inference and question attention networks in parallel to achieve the fine-grained fusion of the visual features and the textual features, then the final answers can be obtained accurately through model stacking. MBGAN achieves 69.41% overall accuracy on the VQA-v1 dataset, 70.79% overall accuracy on the VQA-v2 dataset, and 68.79% overall accuracy on the COCO-QA dataset, which shows that the proposed MBGAN outperforms most of the state-of-the-art models.
引用
收藏
页码:11921 / 11943
页数:23
相关论文
共 50 条
  • [41] Re-Attention for Visual Question Answering
    Guo, Wenya
    Zhang, Ying
    Yang, Jufeng
    Yuan, Xiaojie
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6730 - 6743
  • [42] Re-Attention for Visual Question Answering
    Guo, Wenya
    Zhang, Ying
    Wu, Xiaoping
    Yang, Jufeng
    Cai, Xiangrui
    Yuan, Xiaojie
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 91 - 98
  • [43] Feature Fusion Attention Visual Question Answering
    Wang, Chunlin
    Sun, Jianyong
    Chen, Xiaolin
    [J]. ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 412 - 416
  • [44] Feature Enhancement in Attention for Visual Question Answering
    Lin, Yuetan
    Pang, Zhangyang
    Wang, Donghui
    Zhuang, Yueting
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 4216 - 4222
  • [45] Dynamic Capsule Attention for Visual Question Answering
    Zhou, Yiyi
    Ji, Rongrong
    Su, Jinsong
    Sun, Xiaoshuai
    Chen, Weiqiu
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 9324 - 9331
  • [46] Text-Guided Dual-Branch Attention Network for Visual Question Answering
    Li, Mengfei
    Gu, Li
    Ji, Yi
    Liu, Chunping
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 750 - 760
  • [47] Multi-modal spatial relational attention networks for visual question answering
    Yao, Haibo
    Wang, Lipeng
    Cai, Chengtao
    Sun, Yuxin
    Zhang, Zhi
    Luo, Yongkang
    [J]. IMAGE AND VISION COMPUTING, 2023, 140
  • [48] Cross-modality co-attention networks for visual question answering
    Han, Dezhi
    Zhou, Shuli
    Li, Kuan Ching
    de Mello, Rodrigo Fernandes
    [J]. SOFT COMPUTING, 2021, 25 (07) : 5411 - 5421
  • [49] VIDEO QUESTION ANSWERING USING CLIP-GUIDED VISUAL-TEXT ATTENTION
    Ye, Shuhong
    Kong, Weikai
    Yao, Chenglin
    Ren, Jianfeng
    Jiang, Xudong
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 81 - 85
  • [50] Multi-Modal Explicit Sparse Attention Networks for Visual Question Answering
    Guo, Zihan
    Han, Dezhi
    [J]. SENSORS, 2020, 20 (23) : 1 - 15