Robust Information Criterion for Model Selection in Sparse High-Dimensional Linear Regression Models

被引:0
|
作者
Gohain, Prakash Borpatra [1 ]
Jansson, Magnus [1 ]
机构
[1] KTH Royal Inst Technol, Div Informat Sci & Engn, SE-10044 Stockholm, Sweden
基金
欧洲研究理事会;
关键词
High-dimension; linear regression; data scaling; statistical model selection; subset selection; sparse estimation; scale-invariant; variable selection; CROSS-VALIDATION; MDL;
D O I
10.1109/TSP.2023.3284365
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Model selection in linear regression models is a major challenge when dealing with high-dimensional data where the number of available measurements (sample size) is much smaller than the dimension of the parameter space. Traditional methods for model selection such as Akaike information criterion, Bayesian information criterion (BIC), and minimum description length are heavily prone to overfitting in the high-dimensional setting. In this regard, extended BIC (EBIC), which is an extended version of the original BIC, and extended Fisher information criterion (EFIC), which is a combination of EBIC and Fisher information criterion, are consistent estimators of the true model as the number of measurements grows very large. However, EBIC is not consistent in high signal-to-noise-ratio (SNR) scenarios where the sample size is fixed and EFIC is not invariant to data scaling resulting in unstable behaviour. In this article, we propose a new form of the EBIC criterion called EBIC-Robust, which is invariant to data scaling and consistent in both large sample sizes and high-SNR scenarios. Analytical proofs are presented to guarantee its consistency. Simulation results indicate that the performance of EBIC-Robust is quite superior to that of both EBIC and EFIC.
引用
收藏
页码:2251 / 2266
页数:16
相关论文
共 50 条
  • [21] Consistent Bayesian information criterion based on a mixture prior for possibly high-dimensional multivariate linear regression models
    Kono, Haruki
    Kubokawa, Tatsuya
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (03) : 1022 - 1047
  • [22] Least squares after model selection in high-dimensional sparse models
    Belloni, Alexandre
    Chernozhukov, Victor
    BERNOULLI, 2013, 19 (02) : 521 - 547
  • [23] Robust model selection in linear regression models using information complexity
    Guney, Yesim
    Bozdogan, Hamparsum
    Arslan, Olcay
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 398
  • [24] ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS
    Huang, Jian
    Ma, Shuangge
    Zhang, Cun-Hui
    STATISTICA SINICA, 2008, 18 (04) : 1603 - 1618
  • [25] Sparse Bayesian variable selection in high-dimensional logistic regression models with correlated priors
    Ma, Zhuanzhuan
    Han, Zifei
    Ghosh, Souparno
    Wu, Liucang
    Wang, Min
    STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)
  • [26] Fixed-Size Confidence Regions in High-Dimensional Sparse Linear Regression Models
    Ing, Ching-Kang
    Lai, Tze Leung
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2015, 34 (03): : 324 - 335
  • [27] Robust Estimation of High-Dimensional Linear Regression with Changepoints
    Cui X.
    Geng H.
    Wang Z.
    Zou C.
    IEEE Transactions on Information Theory, 2024, 70 (10) : 1 - 1
  • [28] Robust linear regression for high-dimensional data: An overview
    Filzmoser, Peter
    Nordhausen, Klaus
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (04)
  • [29] Shrinkage and Sparse Estimation for High-Dimensional Linear Models
    Asl, M. Noori
    Bevrani, H.
    Belaghi, R. Arabi
    Ahmed, Syed Ejaz
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 147 - 156
  • [30] Variational Bayes for High-Dimensional Linear Regression With Sparse Priors
    Ray, Kolyan
    Szabo, Botond
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1270 - 1281