Cliques and Supercliques in a Graph

被引:0
|
作者
Canoy Jr, Sergio R. [1 ]
Dela Cerna, Ramil H. [1 ]
Abragan, Armalene [1 ]
机构
[1] MSU Iligan Inst Technol, Coll Sci & Math, Ctr Graph Theory Algebra & Anal PRISM, Dept Math & Stat, Iligan 9200, Philippines
来源
关键词
Clique; clique number; superclique; superclique number; STRONG RESOLVING DOMINATION; METRIC DIMENSION; CORONA; JOIN;
D O I
10.29020/nybg.ejpam.v16i1.4651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S subset of V(G) of an undirected graph G is a clique if every two distinct vertices in S are adjacent. A clique is a superclique if for every pair of distinct vertices v, w E S, there exists u E V (G) \S such that u E NG(v) \ NG(w) or u E NG(w) \ NG(v). The maximum cardinality of a clique (resp. superclique) in G is called the clique (resp. superclique) number of G. In this paper, we determine the clique and superclique numbers of some graphs.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [1] Supercliques in a Graph
    Dela Cerna, Ramil H.
    Canoy, Sergio R., Jr.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1217 - 1228
  • [2] Reconfiguration of Cliques in a Graph
    Ito, Takehiro
    Ono, Hirotaka
    Otachi, Yota
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 212 - 223
  • [3] Reconfiguration of cliques in a graph
    Ito, Takehiro
    Ono, Hirotaka
    Otachi, Yota
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 333 : 43 - 58
  • [4] ON THE PARTITION AND COLORING OF A GRAPH BY CLIQUES
    WALLIS, WD
    ZHANG, GH
    [J]. DISCRETE MATHEMATICS, 1993, 120 (1-3) : 191 - 203
  • [5] On the Covering of the Vertices of a Graph by Cliques
    Paul Erdos
    [J]. Journal of Mathematical Research with Applications, 1982, (01) : 93 - 96
  • [6] On the maximum number of cliques in a graph
    Wood, David R.
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (03) : 337 - 352
  • [7] COVERING ALL CLIQUES OF A GRAPH
    TUZA, Z
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 117 - 126
  • [8] On the Maximum Number of Cliques in a Graph
    David R. Wood
    [J]. Graphs and Combinatorics, 2007, 23 : 337 - 352
  • [9] Graph partition into small cliques
    Yan, Jin
    Gao, Yunshu
    Zhang, Beibei
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 162 : 322 - 327
  • [10] COVERING THE CLIQUES OF A GRAPH WITH VERTICES
    ERDOS, P
    GALLAI, T
    TUZA, Z
    [J]. DISCRETE MATHEMATICS, 1992, 108 (1-3) : 279 - 289