On the Maximum Number of Cliques in a Graph

被引:0
|
作者
David R. Wood
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemática Aplicada II
来源
Graphs and Combinatorics | 2007年 / 23卷
关键词
extremal graph theory; Turán’s Theorem; clique; Complete subgraph; Degeneracy; Graph minor; Planar graph; -minor; -minor;
D O I
暂无
中图分类号
学科分类号
摘要
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2).
引用
收藏
页码:337 / 352
页数:15
相关论文
共 50 条
  • [1] On the maximum number of cliques in a graph
    Wood, David R.
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (03) : 337 - 352
  • [2] On the maximum number of cliques in a graph embedded in a surface
    Dujmovic, Vida
    Fijavz, Gasper
    Joret, Gwenael
    Sulanke, Thom
    Wood, David R.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (08) : 1244 - 1252
  • [3] MAXIMUM NUMBER OF Q-CLIQUES IN A GRAPH WITH NO P-CLIQUE
    ROMAN, S
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A504 - A504
  • [4] MAXIMUM NUMBER OF Q-CLIQUES IN A GRAPH WITH NO P-CLIQUE
    ROMAN, S
    [J]. DISCRETE MATHEMATICS, 1976, 14 (04) : 365 - 371
  • [5] THE MAXIMUM NUMBER OF CLIQUES IN DENSE GRAPHS
    HEDMAN, B
    [J]. DISCRETE MATHEMATICS, 1985, 54 (02) : 161 - 166
  • [7] The binding number of a graph and its cliques
    Lyle, Jeremy
    Goddard, Wayne
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3336 - 3340
  • [8] AN UPPER BOUND ON THE NUMBER OF CLIQUES IN A GRAPH
    FARBER, M
    HUJTER, M
    TUZA, Z
    [J]. NETWORKS, 1993, 23 (03) : 207 - 210
  • [9] Estimation of the Number of Cliques in a Random Graph
    Patel, Sonal
    Harley, Eric
    [J]. PROCEEDINGS OF THE THIRD C* CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING 2010 (C3S2E '10), 2010, : 84 - 88
  • [10] The maximum number of 3-and 4-cliques within a planar maximally filtered graph
    Birch, Jenna
    Pantelous, Athanasios A.
    Zuev, Konstantin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 : 221 - 229