Dimer models and group actions

被引:0
|
作者
Ishii, Akira [1 ]
Nolla, Alvaro [2 ]
Ueda, Kazushi [3 ]
机构
[1] Nagoya Univ, Grad Sch Math, Furo Cho,Chikusa Ku, Nagoya 4648602, Japan
[2] Univ Autonoma Madrid UAM, Fac Teacher Training & Educ, Tomas & Valiente 3, Madrid 28049, Spain
[3] Univ Tokyo, Grad Sch Math Sci, 3-8-1,Meguro Ku, Tokyo 1538914, Japan
关键词
Algebraic geometry; Dimer models; Non-commutative crepant resolutions; McKay correspondence; Moduli spaces of quiver representations; DONALDSON-THOMAS INVARIANTS; CONSISTENCY CONDITIONS; REFLEXIVE MODULES; A-MAXIMIZATION; FLOPS;
D O I
10.1007/s00209-023-03394-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a consistent dimer model having the same symmetry as its characteristic polygon. This produces examples of non-commutative crepant resolutions of non-toric non-quotient Gorenstein singularities in dimension 3.
引用
收藏
页数:24
相关论文
共 50 条