Reverse Isoperimetric Inequality for the Lowest Robin Eigenvalue of a Triangle

被引:3
|
作者
Krejcirik, David [1 ]
Lotoreichik, Vladimir [2 ]
Vu, Tuyen [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
[2] Czech Acad Sci, Nucl Phys Inst, Dept Theoret Phys, Rez 25068, Czech Republic
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2023年 / 88卷 / 02期
关键词
Robin Laplacian; Lowest eigenvalue; Spectral optimisation; Triangles; LAPLACIAN;
D O I
10.1007/s00245-023-10033-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Laplace operator on a triangle, subject to attractive Robin boundary conditions. We prove that the equilateral triangle is a local maximiser of the lowest eigenvalue among all triangles of a given area provided that the negative boundary parameter is sufficiently small in absolute value, with the smallness depending on the area only. Moreover, using various trial functions, we obtain sufficient conditions for the global optimality of the equilateral triangle under fixed area constraint in the regimes of small and large couplings. We also discuss the constraint of fixed perimeter.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] An isoperimetric inequality for a nonlinear eigenvalue problem (vol 29, pg 21, 2012)
    Croce, Gisella
    Henrot, Antoine
    Pisante, Giovanni
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (02): : 485 - 487
  • [42] An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane
    Nikolai S. Nadirashvili
    Alexei V. Penskoi
    Geometric and Functional Analysis, 2018, 28 : 1368 - 1393
  • [43] An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane
    Nadirashvili, Nikolai S.
    Penskoi, Alexei, V
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (05) : 1368 - 1393
  • [44] Sharp triangle inequality and its reverse in Banach spaces
    Kato, Mikio
    Saito, Kichi-Suke
    Tamura, Takayuki
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (02): : 451 - 460
  • [45] ON THE ISOPERIMETRIC EXTREMUM OF AN EIGENVALUE
    GIORGADZE, MG
    MYSHKIS, AD
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1991, 31 (07) : 107 - 109
  • [46] AN ISOPERIMETRIC INEQUALITY
    KLAMKIN, MS
    SIAM REVIEW, 1984, 26 (02) : 275 - 276
  • [47] The Isoperimetric inequality
    S Kesavan
    Resonance, 2002, 7 (9) : 8 - 18
  • [48] ISOPERIMETRIC INEQUALITY
    OSSERMAN, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A25 - A25
  • [49] AN ISOPERIMETRIC INEQUALITY
    ELKIES, N
    KLAMKIN, MS
    SIAM REVIEW, 1986, 28 (01) : 88 - 89
  • [50] ISOPERIMETRIC INEQUALITY
    OSSERMAN, R
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) : 1182 - 1238