Reverse Isoperimetric Inequality for the Lowest Robin Eigenvalue of a Triangle

被引:3
|
作者
Krejcirik, David [1 ]
Lotoreichik, Vladimir [2 ]
Vu, Tuyen [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
[2] Czech Acad Sci, Nucl Phys Inst, Dept Theoret Phys, Rez 25068, Czech Republic
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2023年 / 88卷 / 02期
关键词
Robin Laplacian; Lowest eigenvalue; Spectral optimisation; Triangles; LAPLACIAN;
D O I
10.1007/s00245-023-10033-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Laplace operator on a triangle, subject to attractive Robin boundary conditions. We prove that the equilateral triangle is a local maximiser of the lowest eigenvalue among all triangles of a given area provided that the negative boundary parameter is sufficiently small in absolute value, with the smallness depending on the area only. Moreover, using various trial functions, we obtain sufficient conditions for the global optimality of the equilateral triangle under fixed area constraint in the regimes of small and large couplings. We also discuss the constraint of fixed perimeter.
引用
收藏
页数:33
相关论文
共 50 条