Detection of GAN generated image using color gradient representation*

被引:1
|
作者
Liu, Yun [1 ]
Wan, Zuliang [1 ]
Yin, Xiaohua [1 ]
Yue, Guanghui [2 ]
Tan, Aiping [1 ]
Zheng, Zhi [3 ]
机构
[1] Liaoning Univ, Coll Informat, Shenyang 110036, Peoples R China
[2] Shenzhen Univ, Hlth Sci Ctr, Sch Biomed Engn, Shenzhen 518000, Peoples R China
[3] Beijing Jiaotong Univ, Dept Elect & Informat Engn, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image generative model; Generative adversarial networks; Fake image identification; FACE;
D O I
10.1016/j.jvcir.2023.103876
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of generative adversarial network (GANs) technology, the technology of GAN generates images has evolved dramatically. Distinguishing these GAN generated images is challenging for the human eye. Moreover, the GAN generated fake images may cause some behaviors that endanger society and bring great security problems to society. Research on GAN generated image detection is still in the exploratory stage and many challenges remain. Motivated by the above problem, we propose a novel GAN image detection method based on color gradient analysis. We consider the difference in color information between real images and GAN generated images in multiple color spaces, and combined the gradient information and the directional texture information of the generated images to extract the gradient texture features for GAN generated images detection. Experimental results on PGGAN and StyleGAN2 datasets demonstrate that the proposed method achieves good performance, and is robust to other various perturbation attacks.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Color representation method using RGB color binary-weighted computer-generated holograms
    Masato Fujiwara
    Naoki Takada
    Hiromitsu Araki
    Shohei Ikawa
    Yuki Maeda
    Hiroaki Niwase
    Minoru Oikawa
    Takashi Kakue
    Tomoyoshi Shimobaba
    Tomoyoshi Ito
    Chinese Optics Letters, 2018, 16 (08) : 29 - 33
  • [42] Color representation method using RGB color binary-weighted computer-generated holograms
    Fujiwara, Masato
    Takada, Naoki
    Araki, Hiromitsu
    Ikawa, Shohei
    Maeda, Yuki
    Niwase, Hiroaki
    Oikawa, Minoru
    Kakue, Takashi
    Shimobaba, Tomoyoshi
    Ito, Tomoyoshi
    CHINESE OPTICS LETTERS, 2018, 16 (08)
  • [43] Pothole Detection Using Image Enhancement GAN and Object Detection Network
    Salaudeen, Habeeb
    Celebi, Erbug
    ELECTRONICS, 2022, 11 (12)
  • [44] A Color HSV Image Edge Detection Method Based on Gradient Extreme Value
    Zhao Jing-xiu
    Li Ming-yan
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL III, PROCEEDINGS, 2008, : 381 - 384
  • [45] Color image segmentation guided by a color gradient network
    Wangenheim, Aldo V.
    Bertoldi, Rafael F.
    Abdala, Daniel D.
    Richter, Michael M.
    PATTERN RECOGNITION LETTERS, 2007, 28 (13) : 1795 - 1803
  • [46] On Effectiveness of Human Cell Nuclei Detection Depending on Digital Image Color Representation
    Plawiak-Mowna, Anna
    Mazurkiewicz, Malgorzata
    PRZEGLAD ELEKTROTECHNICZNY, 2018, 94 (01): : 77 - 80
  • [47] Color lines: Image specific color representation.
    Omer, I
    Werman, M
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 946 - 953
  • [48] Color Edge Detection using Quaternion Convolution and Vector Gradient
    BenYoussef, Nadia
    Bouzid, Aicha
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 4, 2017, : 135 - 139
  • [49] Object Detection in Color Images Using Gradient Edge Estimates
    Basalamah, Saleh
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (09): : 139 - 142
  • [50] Multivariate regression edge detection of color image using color image logarithmic processing model
    Zhao, Jing-xiu
    Xiang, Yong-hong
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 4, 2008, : 676 - 681