Prognostic model using 18F-FDG PET radiomics predicts progression-free survival in relapsed/refractory Hodgkin lymphoma

被引:5
|
作者
Driessen, Julia [1 ,2 ,3 ,10 ]
Zwezerijnen, Gerben J. C. [2 ,4 ]
Schoeder, Heiko [5 ]
Kersten, Marie Jose [1 ,3 ]
Moskowitz, Alison J. [6 ]
Moskowitz, Craig H. [7 ]
Eertink, Jakoba J. [2 ,3 ]
Heymans, Martijn W. [9 ]
Boellaard, Ronald [2 ,3 ]
Zijlstra, Josee M. [2 ,8 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Hematol, Amsterdam, Netherlands
[2] Canc Ctr Amsterdam, Div Imaging & Biomarkers, Amsterdam, Netherlands
[3] Lymphoma & Myeloma Ctr Amsterdam, LYMMCARE, Amsterdam, Netherlands
[4] Vrije Univ Amsterdam, Amsterdam Univ, Med Ctr, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[5] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
[6] Mem Sloan Kettering Canc Ctr, Dept Med, New York, NY USA
[7] Sylvester Comprehens Canc Ctr, Dept Med, Miami, FL USA
[8] Vrije Univ Amsterdam, Amsterdam Univ, Med Ctr, Dept Hematol, Amsterdam, Netherlands
[9] Amsterdam Publ Hlth Res Inst, Dept Epidemiol & Data Sci, Amsterdam, Netherlands
[10] Univ Amsterdam, Amsterdam UMC, Dept Hematol, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
关键词
METABOLIC TUMOR VOLUME; STEM-CELL TRANSPLANTATION; OPEN-LABEL; TOMOGRAPHY; OUTCOMES; THERAPY; TRIAL;
D O I
10.1182/bloodadvances.2023010404
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Investigating prognostic factors in patients with relapsed or primary refractory classical Hodgkin lymphoma (R/R cHL) is essential to optimize risk-adapted treatment strategies. We built a prognostic model using baseline quantitative F-18-fluorodeoxyglucose positron emission tomography (PET) radiomics features and clinical characteristics to predict the progression-free survival (PFS) among patients with R/R cHL treated with salvage chemotherapy followed by autologous stem cell transplantation. Metabolic tumor volume and several novel radiomics dissemination features, representing interlesional differences in distance, volume, and standard uptake value, were extracted from the baseline PET. Machine learning using backward selection and logistic regression were applied to develop and train the model on a total of 113 patients from 2 clinical trials. The model was validated on an independent external cohort of 69 patients. In addition, we validated 4 different PET segmentation methods to calculate radiomics features. We identified a subset of patients at high risk for progression with significant inferior 3-year PFS outcomes of 38.1% vs 88.4% for patients in the low-risk group in the training cohort (P < .001) and 38.5% vs 75.0% in the validation cohort (P = .015), respectively. The overall survival was also significantly better in the low-risk group (P = .022 and P < .001). We provide a formula to calculate a risk score for individual patients based on the model. In conclusion, we developed a prognostic model for PFS combining radiomics and clinical features in a large cohort of patients with R/R cHL. This model calculates a PET-based risk profile and can be applied to develop risk-stratified treatment strategies for patients with R/R cHL.
引用
收藏
页码:6732 / 6743
页数:12
相关论文
共 50 条
  • [21] Predictive value of baseline 18F-FDG PET/CT peak standardized uptake value for progression free survival in Hodgkin Lymphoma
    Ferreira, G.
    Ribeiro, T.
    Sampaio, I.
    Teixeira, J.
    Marques, A.
    Duarte, H.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S483 - S483
  • [22] 18F-FDG cerebellum/liver index as a prognostic factor for progression-free survival in diffuse large B-cell lymphoma
    David Morland
    Ghali Zizi
    François Godard
    Anne-Cécile Gauchy
    Carole Durot
    Christine Hoeffel
    Alain Delmer
    Dimitri Papathanassiou
    Eric Durot
    Annals of Nuclear Medicine, 2021, 35 : 785 - 793
  • [23] The role of 18F-FDG PET and 18F-FDG PET/CT in the evaluation of pediatric Hodgkin's lymphoma and non-Hodgkin's lymphoma
    Qiu, Lin
    Chen, Yue
    Wu, Jingbo
    HELLENIC JOURNAL OF NUCLEAR MEDICINE, 2013, 16 (03): : 230 - 236
  • [24] The Effect of Feature Selection Methods on Prognostic Analysis of 18F-FDG PET Radiomics in Lymphoma
    Yong, L.
    Wong, X.
    Chen, Y.
    Liu, S.
    Lin, H.
    Lue, K.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S42 - S43
  • [25] Complete Remission on 18F-FDG-PET Prior to Autologous Stem Cell Transplantation Predicts Superior Event Free Survival of Patients with Relapsed or Refractory Hodgkin Lymphoma
    Peinert, Stefan
    Hoyt, Rosemary
    Szer, Jeffrey
    Seymour, John F.
    Prince, H. Miles
    Roberts, Andrew W.
    Rigacci, Luigi
    Grigg, Andrew
    Ritchie, David S.
    BLOOD, 2008, 112 (11) : 763 - 764
  • [26] A CIBMTR Prognostic Model for Progression-Free Survival (PFS) After Autologous Hematopoietic Cell Transplantation (AHCT) for Relapsed or Refractory Hodgkin Lymphoma (HL)
    Hahn, Theresa
    McCarthy, Philip L., Jr.
    Carreras, Jeanette
    Zhang, Mei-Jie
    Lazarus, Hillard M.
    Laport, Ginna G.
    Montoto, Silvia
    Maloney, David G.
    Hari, Parameswaran
    BLOOD, 2011, 118 (21) : 232 - 233
  • [27] Post-treatment 18F-FDG PET /CT predicts progression-free and cause-specific survival in patients with anal carcinoma
    Houard, Clemence
    Vendrely, Veronique
    Pinaquy, Jean-Baptiste
    Fernandez, Philippe
    Bordenave, Laurence
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [29] Prognostic Value of Pretreatment Radiomic Features of 18F-FDG PET in Patients With Hodgkin Lymphoma
    Lue, Kun-Han
    Wu, Yi-Feng
    Liu, Shu-Hsin
    Hsieh, Tsung-Cheng
    Chuang, Keh-Shih
    Lin, Hsin-Hon
    Chen, Yu-Hung
    CLINICAL NUCLEAR MEDICINE, 2019, 44 (10) : E559 - E565
  • [30] Prognostic Value of Radiomics Signature By Diagnostic 18F-FDG PET/CT Analysis in Aggressive Non-Hodgkin's Lymphoma
    Ferrer Lores, Blanca
    Mayorga-Ruiz, Irene
    Alberich Bayarri, Angel
    Morello-Gonzalez, Daniella
    Pastor-Galan, Irene
    Navarro-Cubells, Blanca
    Serrano, Alicia
    Isabel Teruel, Ana
    Dosda-Munoz, Rosa
    Solano, Carlos
    Marti-Bonmati, Luis
    Jose Terol, Maria
    BLOOD, 2018, 132