Determination of GIS-Based Landslide Susceptibility and Ground Dynamics with Geophysical Measurements and Machine Learning Algorithms

被引:4
|
作者
Dindar, Hilmi [1 ]
Alevkayali, Cagan [2 ]
机构
[1] Cyprus Int Univ, Dept Mech Engn Petr & Nat Gas Engn Programme, Via Mersin 10, Nicosia, Northern Cyprus, Turkiye
[2] Suleyman Demirel Univ, Dept Geog, Isparta, Turkiye
关键词
Landslide; MASW; Machine learning; Geographical information system; SHEAR-WAVE VELOCITY; SPATIAL PREDICTION; DECISION TREE; RANDOM FOREST; CLASSIFICATION; BEHAVIOR; MODEL; MASW; AREA;
D O I
10.1007/s40891-023-00471-w
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Landslide is one of the major natural disasters that threatens engineering structures as well as complicates the construction process. There has been a rapid increase in studies to identify ground dynamics in areas with the potential for landslides. Landslide susceptibility maps are created using Support Vector Machine (SVM) and Random Forest (RF) machine learning algorithms based on geographic information systems to identify possible failures in selected areas. The aim of this study is to train different spatial data with machine learning algorithms to determine susceptible landslide areas, so as to analyze soil properties with the Multi-channel Analysis of Surface Waves (MASW) method, which is a fundamental shallow surface seismic surveying method in geophysical engineering. Also Refraction Microtremor (Re-Mi) method applied in some stations to detect shear wave velocity (V-s) up to engineering bedrock level. Obtained velocity values of soil layers from different seismic methods and historical records were used together to train the model. The seismic surveying results were used for the first time to train the machine learning algorithms to detect high susceptible areas for landslides. Some of the MASW applications were carried out in landslide areas and others in areas considered to be risky. Thus, with the contribution of the seismic method, the dynamic behavior that may occur was analyzed. All the measurements carried out in the Girne (Kyrenia) Mountains terrane. Consequently, it has been determined that the northeast-facing slopes of the Girne Mountains are the highest sensitivity for landslide, in other words, the most active in terms of ground dynamics.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Comparison of GIS-based methodologies for the landslide susceptibility assessment
    Paolo Magliulo
    Antonio Di Lisio
    Filippo Russo
    GeoInformatica, 2009, 13 : 253 - 265
  • [22] Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping
    Bakhtiar Feizizadeh
    Majid Shadman Roodposhti
    Thomas Blaschke
    Jagannath Aryal
    Arabian Journal of Geosciences, 2017, 10
  • [23] Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping
    Feizizadeh, Bakhtiar
    Roodposhti, Majid Shadman
    Blaschke, Thomas
    Aryal, Jagannath
    ARABIAN JOURNAL OF GEOSCIENCES, 2017, 10 (05)
  • [24] Landslide susceptibility assessment with machine learning algorithms
    Marjanovic, Milos
    Bajat, Branislav
    Kovacevic, Milos
    2009 INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS 2009), 2009, : 273 - +
  • [25] Landslide susceptibility mapping using GIS-based statistical and machine learning modeling in the city of Sidi Abdellah, Northern Algeria
    Bourenane Hamid
    Braham Massinissa
    Guessoum Nabila
    Modeling Earth Systems and Environment, 2023, 9 : 2477 - 2500
  • [26] Landslide susceptibility mapping using GIS-based statistical and machine learning modeling in the city of Sidi Abdellah, Northern Algeria
    Hamid, Bourenane
    Massinissa, Braham
    Nabila, Guessoum
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (02) : 2477 - 2500
  • [27] Bagging-based machine learning algorithms for landslide susceptibility modeling
    Zhang, Tingyu
    Fu, Quan
    Wang, Hao
    Liu, Fangfang
    Wang, Huanyuan
    Han, Ling
    NATURAL HAZARDS, 2022, 110 (02) : 823 - 846
  • [28] Bagging-based machine learning algorithms for landslide susceptibility modeling
    Tingyu Zhang
    Quan Fu
    Hao Wang
    Fangfang Liu
    Huanyuan Wang
    Ling Han
    Natural Hazards, 2022, 110 : 823 - 846
  • [29] GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran
    Lei, Xinxiang
    Chen, Wei
    Avand, Mohammadtaghi
    Janizadeh, Saeid
    Kariminejad, Narges
    Shahabi, Hejar
    Costache, Romulus
    Shahabi, Himan
    Shirzadi, Ataollah
    Mosavi, Amir
    REMOTE SENSING, 2020, 12 (15)
  • [30] A Novel GIS-Based Random Forest Machine Algorithm for the Spatial Prediction of Shallow Landslide Susceptibility
    Viet-Hung Dang
    Nhat-Duc Hoang
    Le-Mai-Duyen Nguyen
    Dieu Tien Bui
    Samui, Pijush
    FORESTS, 2020, 11 (01):