Distances between Maximal Monotone Operators

被引:0
|
作者
Tolstonogov, A. A. [1 ]
机构
[1] Matrosov Inst Syst Dynam & Control Theory, Irkutsk, Russia
关键词
maximal monotone operator; -pseudo distance; Hausdorff ?-distance; EVOLUTION PROBLEMS; TIME;
D O I
10.1134/S0037446623040134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a series of distances between maximal monotone operators and study their properties. As applications, we consider the existence of solutions to evolutionary inclusions with maximal monotone operators.
引用
收藏
页码:914 / 926
页数:13
相关论文
共 50 条
  • [1] Distances between Maximal Monotone Operators
    A. A. Tolstonogov
    [J]. Siberian Mathematical Journal, 2023, 64 : 914 - 926
  • [2] Maximal monotone operators and maximal monotone functions for equilibrium problems
    Aoyama, Koji
    Kimura, Yasunori
    Takahashi, Wataru
    [J]. JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 395 - 409
  • [3] Representable Monotone Operators and Limits of Sequences of Maximal Monotone Operators
    Garcia, Yboon
    Lassonde, Marc
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (01) : 61 - 73
  • [4] Representable Monotone Operators and Limits of Sequences of Maximal Monotone Operators
    Yboon García
    Marc Lassonde
    [J]. Set-Valued and Variational Analysis, 2012, 20 : 61 - 73
  • [5] DOMAINS OF MAXIMAL MONOTONE OPERATORS
    WEYER, J
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (03) : 491 - 493
  • [6] A Characterization of Maximal Monotone Operators
    Loehne, Andreas
    [J]. SET-VALUED ANALYSIS, 2008, 16 (5-6): : 693 - 700
  • [7] Regular Maximal Monotone Operators
    Andrei Verona
    Maria E. Verona
    [J]. Set-Valued Analysis, 1998, 6 : 303 - 312
  • [8] Regular maximal monotone operators
    Verona, A
    Verona, ME
    [J]. SET-VALUED ANALYSIS, 1998, 6 (03): : 303 - 312
  • [9] On the convergence of maximal monotone operators
    Penot, JP
    Alinescu, CZ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 1937 - 1946
  • [10] A Characterization of Maximal Monotone Operators
    Andreas Löhne
    [J]. Set-Valued Analysis, 2008, 16 : 693 - 700