Deep Learning for Epidemiologists: An Introduction to Neural Networks

被引:6
|
作者
Serghiou, Stylianos [1 ,2 ]
Rough, Kathryn [3 ]
机构
[1] Prolaio Inc, 6929 N Hayden Rd,Suite C4-441, Scottsdale, AZ 85250 USA
[2] Stanford Univ, Meta Res Innovat Ctr Stanford, Sch Med, Stanford, CA USA
[3] IQVIA Germany, Global Epidemiol & Outcomes Res, Frankfurt, Hessen, Germany
关键词
artificial intelligence; deep learning; epidemiologic methods; machine learning; modeling; neural networks; prediction; RISK PREDICTION; HEALTH; CHALLENGES; MORTALITY; MEDICINE; CLASSIFICATION; MODELS; FUTURE;
D O I
10.1093/aje/kwad107
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Deep learning methods are increasingly being applied to problems in medicine and health care. However, few epidemiologists have received formal training in these methods. To bridge this gap, this article introduces the fundamentals of deep learning from an epidemiologic perspective. Specifically, this article reviews core concepts in machine learning (e.g., overfitting, regularization, and hyperparameters); explains several fundamental deep learning architectures (convolutional neural networks, recurrent neural networks); and summarizes training, evaluation, and deployment of models. Conceptual understanding of supervised learning algorithms is the focus of the article; instructions on the training of deep learning models and applications of deep learning to causal learning are out of this article's scope. We aim to provide an accessible first step towards enabling the reader to read and assess research on the medical applications of deep learning and to familiarize readers with deep learning terminology and concepts to facilitate communication with computer scientists and machine learning engineers.
引用
收藏
页码:1904 / 1916
页数:13
相关论文
共 50 条
  • [31] Robust learning of parsimonious deep neural networks
    Guenter, Valentin Frank Ingmar
    Sideris, Athanasios
    NEUROCOMPUTING, 2024, 566
  • [32] Experiential Robot Learning with Deep Neural Networks
    Aly, Ahmed A.
    Dugan, Joanne Bechta
    2017 THE SEVENTH JOINT IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING AND EPIGENETIC ROBOTICS (ICDL-EPIROB), 2017, : 356 - 361
  • [33] Learning Sparse Patterns in Deep Neural Networks
    Wen, Weijing
    Yang, Fan
    Su, Yangfeng
    Zhou, Dian
    Zeng, Xuan
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2019,
  • [34] Piecewise linear neural networks and deep learning
    Tao, Qinghua
    Li, Li
    Huang, Xiaolin
    Xi, Xiangming
    Wang, Shuning
    Suykens, Johan A. K.
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [35] Piecewise linear neural networks and deep learning
    Nature Reviews Methods Primers, 2 (1):
  • [36] On the Expressivity of Neural Networks for Deep Reinforcement Learning
    Dong, Kefan
    Luo, Yuping
    Yu, Tianhe
    Finn, Chelsea
    Ma, Tengyu
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [37] Evolutionary neural networks for deep learning: a review
    Yongjie Ma
    Yirong Xie
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3001 - 3018
  • [38] Deep supervised learning with mixture of neural networks
    Hu, Yaxian
    Luo, Senlin
    Han, Longfei
    Pan, Limin
    Zhang, Tiemei
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 102
  • [39] Variational tensor neural networks for deep learning
    Jahromi, Saeed S.
    Orus, Roman
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Deep learning with coherent VCSEL neural networks
    Chen, Zaijun
    Sludds, Alexander
    Davis III, Ronald
    Christen, Ian
    Bernstein, Liane
    Ateshian, Lamia
    Heuser, Tobias
    Heermeier, Niels
    Lott, James A.
    Reitzenstein, Stephan
    Hamerly, Ryan
    Englund, Dirk
    NATURE PHOTONICS, 2023, 17 (08) : 723 - +