A study of local symmetry of Birkhoff-James orthogonality in Banach spaces

被引:1
|
作者
Khurana, Divya [1 ,2 ]
机构
[1] IIM Ranchi, Humanities & Appl Sci, Ranchi, Jharkhand, India
[2] IIM Ranchi, Humanities & Appl Sci, Audrey House Campus,Meurs Rd, Ranchi 834008, Jharkhand, India
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 11期
关键词
Birkhoff-James orthogonality; left-symmetric points; right-symmetric points; p sum of Banach spaces; ABSOLUTE NORMS; OPERATORS;
D O I
10.1080/03081087.2023.2198758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a complete characterization of the right-symmetric points in the one sum of two Banach spaces. We also obtain some basic properties of the left-symmetric (right-symmetric) points in the p sum, 1 <= p not equal 2 < infinity (1 < p not equal 2 < infinity), of two Banach spaces. Using these properties we (a) give examples of Banach spaces which do not have any non-zero left-symmetric points and (b) prove a complete characterization of those left-symmetric and right-symmetric points in the p sum, 1 < p not equal 2 < infinity, of two Banach spaces, whose components satisfy an additional norm assumption. We give examples of Banach spaces where all non-zero left-symmetric or right-symmetric points satisfy this additional norm assumption. We also present an alternative proof of the recently obtained characterization of the left-symmetric and the right-symmetric points in l(p)(n), n >= 3, and l(p), 1 <= p not equal 2 < infinity.
引用
收藏
页码:1725 / 1740
页数:16
相关论文
共 50 条
  • [21] Characterization of Birkhoff-James orthogonality
    Bhattacharyya, Tirthankar
    Grover, Priyanka
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) : 350 - 358
  • [22] Dilation and Birkhoff-James orthogonality
    Pal, Sourav
    Roy, Saikat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [23] ON SYMMETRY OF THE (STRONG) BIRKHOFF-JAMES ORTHOGONALITY IN HILBERT C*-MODULES
    Arambasic, Ljiljana
    Rajic, Rajna
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (01): : 17 - 23
  • [24] A NOTE ON THE BIRKHOFF-JAMES ORTHOGONALITY IN THE OPERATOR ALGEBRAS ON HILBERT SPACES
    Moghadam, M. Kafi
    Janfada, A. R.
    Miri, M.
    MATHEMATICAL REPORTS, 2017, 19 (03): : 339 - 345
  • [25] On the continuity of Birkhoff-James ε-orthogonality sets
    Chorianopoulos, Christos
    Psarrakos, Panayiotis J.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (11): : 1447 - 1454
  • [26] Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 511 (01)
  • [27] Characterizations of Operator Birkhoff-James Orthogonality
    Moslehian, Mohammad Sal
    Zamani, Ali
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (04): : 816 - 829
  • [28] Local Approximate Symmetry of Birkhoff–James Orthogonality in Normed Linear Spaces
    Jacek Chmieliński
    Divya Khurana
    Debmalya Sain
    Results in Mathematics, 2021, 76
  • [29] A Note on Symmetry of Birkhoff-James Orthogonality in Positive Cones of LocallyC*-algebras
    Katz, Alexander A.
    MATHEMATICS, 2020, 8 (06)
  • [30] Symmetry of Birkhoff James orthogonality of operators defined between infinite dimensional Banach spaces
    Paul, Kallol
    Mal, Arpita
    Wojcik, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 142 - 153