Knowledge tracing based on multi-feature fusion

被引:7
|
作者
Xiao, Yongkang [1 ]
Xiao, Rong [1 ]
Huang, Ning [1 ]
Hu, Yixin [1 ]
Li, Huan [1 ]
Sun, Bo [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Xinjiekouwai St 19, Beijing, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 02期
基金
中国国家自然科学基金;
关键词
Deep learning; Educational data mining; Multi-feature fusion; Knowledge tracing; Self-attention mechanism; NETWORKS;
D O I
10.1007/s00521-022-07834-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge tracing involves modeling student knowledge states over time so that we can accurately predict student performance in future interactions and recommend personalized student learning paths. However, existing methods, such as deep knowledge tracing and dynamic key-value memory networks (DKVMN), fail to comprehensively consider some key features that may influence the prediction results of knowledge tracing. To solve this problem, we propose a new model called knowledge tracing based on multi-feature fusion (KTMFF), which introduces features of the question text, the knowledge point difficulty, the student ability, and the duration time, etc., provides feature extraction methods, and uses a multi-head self-attention mechanism to combine the above features. This model predicts student mastery levels of knowledge points more accurately. Experiments show that the area under curve (AUC) of the KTMFF model is 3.06% higher than that of the DKVMN model. Furthermore, the ablation study indicates that each of the above features can improve the AUC of the model.
引用
收藏
页码:1819 / 1833
页数:15
相关论文
共 50 条
  • [41] Traffic lights detection and recognition based on multi-feature fusion
    Wang, Wenhao
    Sun, Shanlin
    Jiang, Mingxin
    Yan, Yunyang
    Chen, Xiaobing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (13) : 14829 - 14846
  • [42] MFPred: prediction of ncRNA families based on multi-feature fusion
    Chen, Kai
    Zhu, Xiaodong
    Wang, Jiahao
    Zhao, Ziqi
    Hao, Lei
    Guo, Xinsheng
    Liu, Yuanning
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [43] Multi-feature fusion-based strabismus detection for children
    Zhang, Guiying
    Xu, Wenjing
    Gong, Haotian
    Sun, Lilei
    Li, Cong
    Chen, Huicong
    Xiang, Daoman
    IET IMAGE PROCESSING, 2023, 17 (05) : 1590 - 1602
  • [44] A Moving Shadow Elimination Method Based on Fusion of Multi-Feature
    Zhang, Hongrui
    Qu, Shaocheng
    Li, Huan
    Luo, Jing
    Xu, Wenjun
    IEEE ACCESS, 2020, 8 : 63971 - 63982
  • [45] Sub-blocks segmentation based on multi-feature fusion
    Chen, Hongyu
    Luo, Haibo
    Chang, Zheng
    Hui, Bin
    Jiao, Anbo
    OPTICAL SENSING AND IMAGING TECHNOLOGIES AND APPLICATIONS, 2018, 10846
  • [46] Human behavior recognition based on multi-feature fusion of image
    Xu Song
    Hongyu Zhou
    Guoying Liu
    Cluster Computing, 2019, 22 : 9113 - 9121
  • [47] Human behavior recognition based on multi-feature fusion of image
    Song, Xu
    Zhou, Hongyu
    Liu, Guoying
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9113 - S9121
  • [48] An Image Edge Detection Algorithm Based on Multi-Feature Fusion
    Wang, Zhenzhou
    Li, Kangyang
    Wang, Xiang
    Lee, Antonio
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 4995 - 5009
  • [49] Chinese Address Recognition Method Based on Multi-Feature Fusion
    Wang, Yansong
    Wang, Meng
    Ding, Chaoling
    Yang, Xinghua
    Chen, Jian
    IEEE ACCESS, 2022, 10 : 108905 - 108913
  • [50] Fatigue detection based on multi-feature fusion of fatigue behavior
    Chen Xing
    Su Lumei
    Qin Meixin
    2020 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, CONTROL AND ROBOTICS (EECR 2020), 2020, 853