Relations between product and flag Triebel-Lizorkin spaces

被引:1
|
作者
Cao, Yannan [1 ]
Chang, Der-Chen [2 ,3 ]
Wu, Xinfeng [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing, Peoples R China
[2] Georgetown Univ, Dept Math & Stat, Washington, DC USA
[3] Fu Jen Catholic Univ, Grad Inst Business Adm, Coll Management, Taipei, Taiwan
关键词
Flag kernels; product kernels; Triebel-Lizorkin spaces; CALDERON-ZYGMUND THEORY; SINGULAR-INTEGRALS; MARCINKIEWICZ MULTIPLIERS; HOMOGENEOUS GROUPS; KERNELS; BESOV; BOUNDEDNESS; OPERATORS;
D O I
10.1080/00036811.2024.2302092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nagel, Ricci and Stein proved that product kernels are finite sums of flag kernels in the Euclidean space. We show that the product Triebel-Lizorkin space is the intersection of two flag Triebel-Lizorkin spaces. This extends a main result in [Chang D-C, Han Y, Wu X. Relations between product and flag Hardy spaces. J Geom Anal. 2021;31(7):6601-6623]. As an application, we provide a new proof of the boundedness of product singular integral operators on product Triebel-Lizorkin spaces.
引用
收藏
页码:2516 / 2534
页数:19
相关论文
共 50 条
  • [31] Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators
    Georgiadis, Athanasios G.
    Kyriazis, George
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 418 - 429
  • [32] The characterization of the Triebel-Lizorkin spaces forp=∞
    Huy-Qui Bui
    Mitchell H. Taibleson
    Journal of Fourier Analysis and Applications, 2000, 6 : 537 - 550
  • [33] Smooth Decompositions of Triebel-Lizorkin and Besov Spaces on Product Spaces of Homogeneous Type
    Liao, Fanghui
    Liu, Zongguang
    Zhang, Xiaojin
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [34] The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces
    Xu, J. S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (08) : 599 - 605
  • [35] T1 theorem on homogeneous product Besov spaces and product Triebel-Lizorkin spaces
    Zheng, Taotao
    Xiao, Yanmei
    He, Shaoyong
    Tao, Xiangxing
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (03)
  • [36] Boundedness of Fractional Integrals with a Rough Kernel on the Product Triebel-Lizorkin Spaces
    ZHANG HUI-HUI
    YU XIAO
    XIANG ZHONG-QI
    Ji You-qing
    Communications in Mathematical Research, 2017, 33 (03) : 259 - 273
  • [37] Multi-parameter Triebel-Lizorkin and Besov spaces associated with flag singular integrals
    Yong Ding
    Guo Zhen Lu
    Bo Lin Ma
    Acta Mathematica Sinica, English Series, 2010, 26 : 603 - 620
  • [38] Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces
    Cao, Wei
    Chen, Jie Cheng
    Fan, Da Shan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (11) : 2071 - 2084
  • [39] Complex interpolation of variable Triebel-Lizorkin spaces
    Drihem, Douadi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 179 : 72 - 90
  • [40] Continuity of multilinear operators on Triebel-Lizorkin spaces
    Lanzhe Liu
    Journal of Inequalities and Applications, 2006