Relations between product and flag Triebel-Lizorkin spaces

被引:1
|
作者
Cao, Yannan [1 ]
Chang, Der-Chen [2 ,3 ]
Wu, Xinfeng [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing, Peoples R China
[2] Georgetown Univ, Dept Math & Stat, Washington, DC USA
[3] Fu Jen Catholic Univ, Grad Inst Business Adm, Coll Management, Taipei, Taiwan
关键词
Flag kernels; product kernels; Triebel-Lizorkin spaces; CALDERON-ZYGMUND THEORY; SINGULAR-INTEGRALS; MARCINKIEWICZ MULTIPLIERS; HOMOGENEOUS GROUPS; KERNELS; BESOV; BOUNDEDNESS; OPERATORS;
D O I
10.1080/00036811.2024.2302092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nagel, Ricci and Stein proved that product kernels are finite sums of flag kernels in the Euclidean space. We show that the product Triebel-Lizorkin space is the intersection of two flag Triebel-Lizorkin spaces. This extends a main result in [Chang D-C, Han Y, Wu X. Relations between product and flag Hardy spaces. J Geom Anal. 2021;31(7):6601-6623]. As an application, we provide a new proof of the boundedness of product singular integral operators on product Triebel-Lizorkin spaces.
引用
收藏
页码:2516 / 2534
页数:19
相关论文
共 50 条