Extract latent features of single-particle trajectories with historical experience learning

被引:1
|
作者
Zhang, Yongyu [1 ]
Ge, Feng [1 ]
Lin, Xijian [1 ]
Xue, Jianfeng [1 ]
Song, Yuxin [1 ]
Xie, Hao [2 ]
He, Yan [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
DIFFUSIVE STATES; CELLULAR UPTAKE; TRACKING; CLASSIFICATION; MEMBRANE; DYNAMICS; PLATFORM;
D O I
10.1016/j.bpj.2023.10.023
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Single-particle tracking has enabled real-time, in situ quantitative studies of complex systems. However, inferring dynamic state changes from noisy and undersampling trajectories encounters challenges. Here, we introduce a data-driven method for extracting features of subtrajectories with historical experience learning (Deep-SEES), where a single-particle tracking analysis pipeline based on a self-supervised architecture automatically searches for the latent space, allowing effective segmentation of the underlying states from noisy trajectories without prior knowledge on the particle dynamics. We validated our method on a variety of noisy simulated and experimental data. Our results showed that the method can faithfully capture both stable states and their dynamic switch. In highly random systems, our method outperformed commonly used unsupervised methods in inferring motion states, which is important for understanding nanoparticles interacting with living cell membranes, active enzymes, and liquid-liquid phase separation. Self-generating latent features of trajectories could potentially improve the understanding, estimation, and prediction of many complex systems.
引用
收藏
页码:4451 / 4466
页数:16
相关论文
共 50 条
  • [31] Spatial Structure and Diffusive Dynamics from Single-Particle Trajectories Using Spline Analysis
    Long, Brian R.
    Vu, Tania Q.
    BIOPHYSICAL JOURNAL, 2010, 98 (08) : 1712 - 1721
  • [32] Move, Dither, Move, Dither. On the Structure of Random Walks and Single-Particle Trajectories
    Saxton, Michael J.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 501 - 501
  • [33] The single-particle and collective features in the nuclei just above 132Sn
    Mach, H.
    Fraile, L. M.
    Arndt, O.
    Blazhev, A.
    Boelaert, N.
    Borge, M. J. C.
    Boutami, R.
    Bradley, H.
    Braun, N.
    Brown, B. A.
    Butler, P. A.
    Covello, A.
    Dlouhy, Z.
    Fransen, C.
    Fynbo, H. O. U.
    Gargano, A.
    Hinke, Ch.
    Hoff, P.
    Joinet, A.
    Jokinen, A.
    Jolie, J.
    Koester, U.
    Korgul, A.
    Kratz, K.-L.
    Kroell, T.
    Kurcewicz, W.
    Nyberg, J.
    Reillo, E.-M.
    Ruchowska, E.
    Schwerdtfeger, W.
    Simpson, C. S.
    Stanoiu, L.
    Tengblad, O.
    Thirolf, P. C.
    Ugryumov, V.
    Walters, W. B.
    ACTA PHYSICA POLONICA B, 2007, 38 (04): : 1213 - 1218
  • [34] A machine learning approach to aerosol classification for single-particle mass spectrometry
    Christopoulos, Costa D.
    Garimella, Sarvesh
    Zawadowicz, Maria A.
    Moehler, Ottmar
    Cziczo, Daniel J.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (10) : 5687 - 5699
  • [35] Structural features of mitochondrial protein translocases revealed by single-particle electron microscopy
    Model, K
    Meisinger, C
    Rehling, P
    Kovermann, P
    Wagner, R
    Kühlbrandt, W
    Pfanner, N
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 461A - 462A
  • [36] Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories
    Koo, Peter K.
    Mochrie, Simon G. J.
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [37] SINGLE-PARTICLE TRAJECTORIES IN AXISYMMETRICAL ELECTROMAGNETIC-FIELDS - APPLICATION TO TOKAMAKS UNDER RUNAWAY REGIME
    GRATREAU, P
    PLASMA PHYSICS AND CONTROLLED FUSION, 1977, 19 (08) : 695 - 706
  • [38] Recovering a stochastic process from super-resolution noisy ensembles of single-particle trajectories
    Hoze, N.
    Holcman, D.
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [39] CLINICAL FEATURES OF LATENT/MASKED POLYCYTHEMIA VERA (SINGLE CENTER EXPERIENCE)
    Subortseva, I.
    Melikyan, A.
    Kovrigina, A.
    Kolosheynova, T.
    Abdullaev, A.
    Sudarikov, A.
    Kulikov, S.
    HAEMATOLOGICA, 2016, 101 : 812 - 812
  • [40] Learning single-particle mobility edges by a neural network based on data compression
    Bai, Xiao-Dong
    Zhao, Jie
    Han, Yu-Yong
    Zhao, Jin-Cui
    Wang, Ji-Guo
    PHYSICAL REVIEW B, 2021, 103 (13)