We estimate explicit lower bounds for the isoperimetric profiles of the Riemannian product of a compact manifold and the Euclidean space with the flat metric, (M-m x R-n, (g)+(gE)), m, n > 1. In particular, we introduce a lower bound for the isoperimetric profile of Mm x Rn for regions of large volume and we improve on previous estimates of lower bounds for the isoperimetric profiles of S(2 )x R-2, S-3 x R-2, S-2 x R-3. We also discuss some applications of these results in order to improve known lower bounds for the Yamabe invariant of certain product manifolds.(c) 2023 Elsevier B.V. All rights reserved.
机构:
Scuola Int Super Studi Avanzati, Math, Via Bonomea 265, I-34136 Trieste, ItalyScuola Int Super Studi Avanzati, Math, Via Bonomea 265, I-34136 Trieste, Italy
机构:
Univ Palermo, Dipartimento Metodi & Modelli Matemat, Fac Ingn, I-90128 Palermo, ItalyUniv Palermo, Dipartimento Metodi & Modelli Matemat, Fac Ingn, I-90128 Palermo, Italy
Grimaldi, Renata
Nardulli, Stefano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Palermo, Dipartimento Metodi & Modelli Matemat, Fac Ingn, I-90128 Palermo, ItalyUniv Palermo, Dipartimento Metodi & Modelli Matemat, Fac Ingn, I-90128 Palermo, Italy
Nardulli, Stefano
Pansu, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, Lab Math Orsay, CNRS, UMR 8628, F-91405 Orsay, FranceUniv Palermo, Dipartimento Metodi & Modelli Matemat, Fac Ingn, I-90128 Palermo, Italy