Examining multi-objective deep reinforcement learning frameworks for molecular design

被引:2
|
作者
Al-Jumaily, Aws [1 ]
Mukaidaisi, Muhetaer [1 ]
Vu, Andrew [1 ]
Tchagang, Alain [2 ]
Li, Yifeng [1 ]
机构
[1] Brock Univ, Dept Comp Sci, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
[2] Natl Res Council Canada, Digital Technol Res Ctr, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Drug design; Deep reinforcement learning; Molecular optimization; Multi-objective optimization; Fragment-based drug design; DeepFMPO;
D O I
10.1016/j.biosystems.2023.104989
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drug design and optimization are challenging tasks that call for strategic and efficient exploration of the extremely vast search space. Multiple fragmentation strategies have been proposed in the literature to mitigate the complexity of the molecular search space. From an optimization standpoint, drug design can be considered as a multi-objective optimization problem. Deep reinforcement learning (DRL) frameworks have demonstrated encouraging results in the field of drug design. However, the scalability of these frameworks is impeded by substantial training intervals and inefficient use of sample data. In this paper, we (1) examine the core principles of deep or multi-objective RL methods and their applications in molecular design, (2) analyze the performance of a recent multi-objective DRL-based and fragment-based drug design framework, named DeepFMPO, in a real-world application by incorporating optimization of protein-ligand docking affinity with varying numbers of other objectives, and (3) compare this method with a single-objective variant. Through trials, our results indicate that the DeepFMPO framework (with docking score) can achieve success, however, it suffers from training instability. Our findings encourage additional exploration and improvement of the framework. Potential sources of the framework's instability and suggestions of further modifications to stabilize the framework are discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multi-Objective Deep Reinforcement Learning for Variable Speed Limit Control
    Rhanizar, Asmae
    El Akkaoui, Zineb
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 621 - 627
  • [22] Collaborative Deep Reinforcement Learning Method for Multi-Objective Parameter Tuning
    Luo S.
    Wei J.
    Liu X.
    Pan L.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2022, 42 (09): : 969 - 975
  • [23] Multi-objective deep inverse reinforcement learning for weight estimation of objectives
    Naoya Takayama
    Sachiyo Arai
    Artificial Life and Robotics, 2022, 27 : 594 - 602
  • [24] Deep reinforcement learning for a multi-objective operation in a nuclear power plant
    Bae, Junyong
    Kim, Jae Min
    Lee, Seung Jun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (09) : 3277 - 3290
  • [25] Deep Reinforcement Learning for Solving Multi-objective Vehicle Routing Problem
    Zhang, Jian
    Hu, Rong
    Wang, Yi-Jun
    Yang, Yuan-Yuan
    Qian, Bin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 146 - 155
  • [26] Deep Reinforcement Learning based Multi-Objective Systems for Financial Trading
    Bisht, Kiran
    Kumar, Arun
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,
  • [27] Multi-objective deep inverse reinforcement learning for weight estimation of objectives
    Takayama, Naoya
    Arai, Sachiyo
    ARTIFICIAL LIFE AND ROBOTICS, 2022, 27 (03) : 594 - 602
  • [28] Multi-Objective Deep Reinforcement Learning for Crowd Route Guidance Optimization
    Nishida, Ryo
    Tanigaki, Yuki
    Onishi, Masaki
    Hashimoto, Koichi
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (05) : 617 - 633
  • [29] Data transmission optimization based on multi-objective deep reinforcement learning
    Wang, Cuiping
    Li, Xiaole
    Tian, Jinwei
    Yin, Yilong
    COMPUTER JOURNAL, 2024, 68 (02): : 201 - 215
  • [30] Multi-Agent Deep Reinforcement Learning for Resource Allocation in the Multi-Objective HetNet
    Nie, Hongrui
    Li, Shaosheng
    Liu, Yong
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 116 - 121